About the Project

L%E2%80%99H%C3%B4pital%20rule

AdvancedHelp

(0.002 seconds)

11—20 of 325 matching pages

11: 11.4 Basic Properties
β–Ίwhere β„‹ Ξ½ ⁑ ( z ) denotes either 𝐇 Ξ½ ⁑ ( z ) or 𝐋 Ξ½ ⁑ ( z ) . … β–Ί
𝐋 0 ⁑ ( z ) = 2 Ο€ + 𝐋 1 ⁑ ( z ) ,
β–Ί
d d z ⁑ ( z ⁒ 𝐋 1 ⁑ ( z ) ) = z ⁒ 𝐋 0 ⁑ ( z ) .
β–ΊFor properties of zeros of 𝐇 Ξ½ ⁑ ( x ) see Steinig (1970). β–ΊFor asymptotic expansions of zeros of 𝐇 0 ⁑ ( x ) see MacLeod (2002a).
12: 25.15 Dirichlet L -functions
§25.15 Dirichlet L -functions
β–Ί
§25.15(i) Definitions and Basic Properties
β–ΊThe notation L ⁑ ( s , Ο‡ ) was introduced by Dirichlet (1837) for the meromorphic continuation of the function defined by the series … … β–Ί
§25.15(ii) Zeros
13: 23.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ί
𝕃 lattice in β„‚ .
G × H Cartesian product of groups G and H , that is, the set of all pairs of elements ( g , h ) with group operation ( g 1 , h 1 ) + ( g 2 , h 2 ) = ( g 1 + g 2 , h 1 + h 2 ) .
β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …
14: 18.39 Applications in the Physical Sciences
β–Ίwhere L 2 is the (squared) angular momentum operator (14.30.12). … β–Ίwith an infinite set of orthonormal L 2 eigenfunctions … p here being the order of the Laguerre polynomial, L p ( 2 ⁒ l + 1 ) of Table 18.8.1, line 11, and l the angular momentum quantum number, and where … β–ΊThe bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the Ξ΄ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. … β–ΊThe fact that non- L 2 continuum scattering eigenstates may be expressed in terms or (infinite) sums of L 2 functions allows a reformulation of scattering theory in atomic physics wherein no non- L 2 functions need appear. …
15: 18.14 Inequalities
β–Ί
18.14.8 e 1 2 ⁒ x ⁒ | L n ( α ) ⁑ ( x ) | L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! , 0 x < , α 0 .
β–Ί
18.14.12 ( L n ( α ) ⁑ ( x ) ) 2 L n 1 ( α ) ⁑ ( x ) ⁒ L n + 1 ( α ) ⁑ ( x ) , 0 x < , α 0 .
β–ΊLet the maxima x n , m , m = 0 , 1 , , n 1 , of | L n ( Ξ± ) ⁑ ( x ) | in [ 0 , ) be arranged so that … β–Ί
18.14.24 | L n ( Ξ± ) ⁑ ( x n , 0 ) | < | L n ( Ξ± ) ⁑ ( x n , 1 ) | < β‹― < | L n ( Ξ± ) ⁑ ( x n , n 1 ) | .
β–ΊThe successive maxima of | H n ⁑ ( x ) | form a decreasing sequence for x 0 , and an increasing sequence for x 0 . …
16: 18.18 Sums
β–Ί
Expansion of L 2 functions
β–ΊIn all three cases of Jacobi, Laguerre and Hermite, if f ⁑ ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. … β–Ί
18.18.12 L n ( Ξ± ) ⁑ ( Ξ» ⁒ x ) L n ( Ξ± ) ⁑ ( 0 ) = β„“ = 0 n ( n β„“ ) ⁒ Ξ» β„“ ⁒ ( 1 Ξ» ) n β„“ ⁒ L β„“ ( Ξ± ) ⁑ ( x ) L β„“ ( Ξ± ) ⁑ ( 0 ) .
β–Ί
18.18.37 β„“ = 0 n L β„“ ( Ξ± ) ⁑ ( x ) = L n ( Ξ± + 1 ) ⁑ ( x ) ,
β–Ί
18.18.40 β„“ = 0 n ( n β„“ ) ⁒ H 2 ⁒ β„“ ⁑ ( x ) ⁒ H 2 ⁒ n 2 ⁒ β„“ ⁑ ( y ) = ( 1 ) n ⁒ 2 2 ⁒ n ⁒ n ! ⁒ L n ⁑ ( x 2 + y 2 ) .
17: 18.6 Symmetry, Special Values, and Limits to Monomials
β–Ί
18.6.1 L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! .
β–Ί
Table 18.6.1: Classical OP’s: symmetry and special values.
β–Ί β–Ίβ–Ίβ–Ί
p n ⁑ ( x ) p n ⁑ ( x ) p n ⁑ ( 1 ) p 2 ⁒ n ⁑ ( 0 ) p 2 ⁒ n + 1 ⁑ ( 0 )
H n ⁑ ( x ) ( 1 ) n ⁒ H n ⁑ ( x ) ( 1 ) n ⁒ ( n + 1 ) n 2 ⁒ ( 1 ) n ⁒ ( n + 1 ) n + 1
β–Ί
β–Ί
18.6.5 lim α L n ( α ) ⁑ ( α ⁒ x ) L n ( α ) ⁑ ( 0 ) = ( 1 x ) n .
18: 18.17 Integrals
β–Ί
18.17.2 0 x L m ⁑ ( y ) ⁒ L n ⁑ ( x y ) ⁒ d y = 0 x L m + n ⁑ ( y ) ⁒ d y = L m + n ⁑ ( x ) L m + n + 1 ⁑ ( x ) .
β–Ί
18.17.14 x Ξ± + ΞΌ ⁒ L n ( Ξ± + ΞΌ ) ⁑ ( x ) Ξ“ ⁑ ( Ξ± + ΞΌ + n + 1 ) = 0 x y Ξ± ⁒ L n ( Ξ± ) ⁑ ( y ) Ξ“ ⁑ ( Ξ± + n + 1 ) ⁒ ( x y ) ΞΌ 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y , ΞΌ > 0 , x > 0 .
β–Ί
18.17.15 e x ⁒ L n ( Ξ± ) ⁑ ( x ) = x e y ⁒ L n ( Ξ± + ΞΌ ) ⁑ ( y ) ⁒ ( y x ) ΞΌ 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y , ΞΌ > 0 .
β–Ί
18.17.30 0 x 2 ⁒ n ⁒ e 1 2 ⁒ x 2 ⁒ L n ( n 1 2 ) ⁑ ( 1 2 ⁒ x 2 ) ⁒ cos ⁑ ( x ⁒ y ) ⁒ d x = 1 2 ⁒ Ο€ ⁒ y 2 ⁒ n ⁒ e 1 2 ⁒ y 2 ⁒ L n ( n 1 2 ) ⁑ ( 1 2 ⁒ y 2 ) ,
β–Ί
18.17.47 0 x t Ξ± ⁒ L m ( Ξ± ) ⁑ ( t ) L m ( Ξ± ) ⁑ ( 0 ) ⁒ ( x t ) Ξ² ⁒ L n ( Ξ² ) ⁑ ( x t ) L n ( Ξ² ) ⁑ ( 0 ) ⁒ d t = Ξ“ ⁑ ( Ξ± + 1 ) ⁒ Ξ“ ⁑ ( Ξ² + 1 ) Ξ“ ⁑ ( Ξ± + Ξ² + 2 ) ⁒ x Ξ± + Ξ² + 1 ⁒ L m + n ( Ξ± + Ξ² + 1 ) ⁑ ( x ) L m + n ( Ξ± + Ξ² + 1 ) ⁑ ( 0 ) .
19: 18.1 Notation
β–Ί
  • Laguerre: L n ( Ξ± ) ⁑ ( x ) and L n ⁑ ( x ) = L n ( 0 ) ⁑ ( x ) . ( L n ( Ξ± ) ⁑ ( x ) with Ξ± 0 is also called Generalized Laguerre.)

  • β–Ί
  • Hermite: H n ⁑ ( x ) , 𝐻𝑒 n ⁑ ( x ) .

  • β–Ί
  • q -Laguerre: L n ( Ξ± ) ⁑ ( x ; q ) .

  • β–Ί
  • Continuous q -Hermite: H n ⁑ ( x | q ) .

  • 20: 18.9 Recurrence Relations and Derivatives
    β–Ί
    18.9.13 L n ( α ) ⁑ ( x ) = L n ( α + 1 ) ⁑ ( x ) L n 1 ( α + 1 ) ⁑ ( x ) ,
    β–Ί
    18.9.14 x ⁒ L n ( α + 1 ) ⁑ ( x ) = ( n + 1 ) ⁒ L n + 1 ( α ) ⁑ ( x ) + ( n + α + 1 ) ⁒ L n ( α ) ⁑ ( x ) .
    β–Ί
    18.9.23 d d x ⁑ L n ( α ) ⁑ ( x ) = L n 1 ( α + 1 ) ⁑ ( x ) ,
    β–Ί
    18.9.24 d d x ⁑ ( e x ⁒ x α ⁒ L n ( α ) ⁑ ( x ) ) = ( n + 1 ) ⁒ e x ⁒ x α 1 ⁒ L n + 1 ( α 1 ) ⁑ ( x ) .
    β–Ί
    18.9.25 d d x ⁑ H n ⁑ ( x ) = 2 ⁒ n ⁒ H n 1 ⁑ ( x ) ,