About the Project

Jacobian elliptic functions

AdvancedHelp

(0.016 seconds)

31—40 of 55 matching pages

31: 29.8 Integral Equations
29.8.1 x = k 2 sn ( z , k ) sn ( z 1 , k ) sn ( z 2 , k ) sn ( z 3 , k ) k 2 k 2 cn ( z , k ) cn ( z 1 , k ) cn ( z 2 , k ) cn ( z 3 , k ) + 1 k 2 dn ( z , k ) dn ( z 1 , k ) dn ( z 2 , k ) dn ( z 3 , k ) ,
where z , z 1 , z 2 , z 3 are real, and sn , cn , dn are the Jacobian elliptic functions22.2). …
29.8.6 y = 1 k dn ( z , k ) dn ( z 1 , k ) .
29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
29.8.9 𝐸𝑠 ν 2 m + 2 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = K w 2 ( 0 ) = k 4 k sn ( z 1 , k ) cn ( z 1 , k ) K K sn ( z , k ) cn ( z , k ) d 2 𝖯 ν ( y ) d y 2 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) d z .
32: 20.9 Relations to Other Functions
§20.9(ii) Elliptic Functions and Modular Functions
See §§22.2 and 23.6(i) for the relations of Jacobian and Weierstrass elliptic functions to theta functions. …
33: 19.25 Relations to Other Functions
Thus the five permutations induce five transformations of Legendre’s integrals (and also of the Jacobian elliptic functions). …
§19.25(v) Jacobian Elliptic Functions
For the use of R -functions with Δ ( p , q ) in unifying other properties of Jacobian elliptic functions, see Carlson (2004, 2006a, 2006b, 2008). Inversions of 12 elliptic integrals of the first kind, producing the 12 Jacobian elliptic functions, are combined and simplified by using the properties of R F ( x , y , z ) . … …
34: 23.6 Relations to Other Functions
§23.6(ii) Jacobian Elliptic Functions
35: 29.10 Lamé Functions with Imaginary Periods
29.10.3 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) ) w = 0 .
36: 29.2 Differential Equations
§29.2(ii) Other Forms
29.2.3 ξ = sn 2 ( z , k ) .
37: 31.2 Differential Equations
31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
38: 29.12 Definitions
In the fourth column the variable z and modulus k of the Jacobian elliptic functions have been suppressed, and P ( sn 2 ) denotes a polynomial of degree n in sn 2 ( z , k ) (different for each type). …
39: 29.7 Asymptotic Expansions
Müller (1966a, b) found three formal asymptotic expansions for a fundamental system of solutions of (29.2.1) (and (29.11.1)) as ν , one in terms of Jacobian elliptic functions and two in terms of Hermite polynomials. …
40: Bibliography C
  • B. C. Carlson (2004) Symmetry in c, d, n of Jacobian elliptic functions. J. Math. Anal. Appl. 299 (1), pp. 242–253.
  • B. C. Carlson (2005) Jacobian elliptic functions as inverses of an integral. J. Comput. Appl. Math. 174 (2), pp. 355–359.
  • B. C. Carlson (2006a) Some reformulated properties of Jacobian elliptic functions. J. Math. Anal. Appl. 323 (1), pp. 522–529.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.