About the Project

Jacobi%20triple%20product

AdvancedHelp

(0.002 seconds)

11—20 of 333 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 20.12 Mathematical Applications
For applications of θ 3 ( 0 , q ) to problems involving sums of squares of integers see §27.13(iv), and for extensions see Estermann (1959), Serre (1973, pp. 106–109), Koblitz (1993, pp. 176–177), and McKean and Moll (1999, pp. 142–143). For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s τ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). … The space of complex tori / ( + τ ) (that is, the set of complex numbers z in which two of these numbers z 1 and z 2 are regarded as equivalent if there exist integers m , n such that z 1 z 2 = m + τ n ) is mapped into the projective space P 3 via the identification z ( θ 1 ( 2 z | τ ) , θ 2 ( 2 z | τ ) , θ 3 ( 2 z | τ ) , θ 4 ( 2 z | τ ) ) . …
13: 22.14 Integrals
See §22.16(i) for am ( z , k ) . … The indefinite integral of the 3rd power of a Jacobian function can be expressed as an elementary function of Jacobian functions and a product of Jacobian functions. … For indefinite integrals of squares and products of even powers of Jacobian functions in terms of symmetric elliptic integrals, see Carlson (2006b). …
14: 27.9 Quadratic Characters
27.9.3 ( p | q ) ( q | p ) = ( 1 ) ( p 1 ) ( q 1 ) / 4 .
If an odd integer P has prime factorization P = r = 1 ν ( n ) p r a r , then the Jacobi symbol ( n | P ) is defined by ( n | P ) = r = 1 ν ( n ) ( n | p r ) a r , with ( n | 1 ) = 1 . The Jacobi symbol ( n | P ) is a Dirichlet character (mod P ). …
15: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
16: 22.8 Addition Theorems
22.8.1 sn ( u + v ) = sn u cn v dn v + sn v cn u dn u 1 k 2 sn 2 u sn 2 v ,
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
17: Bibliography I
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • 18: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 19: 22.6 Elementary Identities
    22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
    22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
    22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
    §22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
    Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
    sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
    20: 27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. … Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …