About the Project

Glaisher%20constant

AdvancedHelp

(0.002 seconds)

21—30 of 501 matching pages

21: 25.6 Integer Arguments
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
where γ 1 is given by (25.2.5). …
25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
25.6.14 ( 1 ) k ζ ( k ) ( 1 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n ) ζ ( m r ) ( 2 n ) ,
22: 15.10 Hypergeometric Differential Equation
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are:
15.10.17 w 3 ( z ) = Γ ( 1 c ) Γ ( a + b c + 1 ) Γ ( a c + 1 ) Γ ( b c + 1 ) w 1 ( z ) + Γ ( c 1 ) Γ ( a + b c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) ,
15.10.18 w 4 ( z ) = Γ ( 1 c ) Γ ( c a b + 1 ) Γ ( 1 a ) Γ ( 1 b ) w 1 ( z ) + Γ ( c 1 ) Γ ( c a b + 1 ) Γ ( c a ) Γ ( c b ) w 2 ( z ) ,
15.10.21 w 1 ( z ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) w 3 ( z ) + Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) w 4 ( z ) ,
15.10.25 w 1 ( z ) = Γ ( c ) Γ ( b a ) Γ ( b ) Γ ( c a ) w 5 ( z ) + Γ ( c ) Γ ( a b ) Γ ( a ) Γ ( c b ) w 6 ( z ) ,
23: 36 Integrals with Coalescing Saddles
24: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
25: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
26: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 27: 22.2 Definitions
    Glaisher’s Notation
    28: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • 29: 20.10 Integrals
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    Let s , , and β be constants such that s > 0 , > 0 , and | β | + | β | . …
    30: 28.1 Special Notation
    m , n integers.
    δ arbitrary small positive number.
    Abramowitz and Stegun (1964, Chapter 20)