About the Project

Genocchi%20numbers

AdvancedHelp

(0.002 seconds)

21—30 of 274 matching pages

21: 27.18 Methods of Computation: Primes
§27.18 Methods of Computation: Primes
An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer x is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
22: 26.12 Plane Partitions
Then the number of plane partitions in B ( r , s , t ) is … The number of symmetric plane partitions in B ( r , r , t ) is … The number of cyclically symmetric plane partitions in B ( r , r , r ) is … The number of descending plane partitions in B ( r , r , r ) is …
23: 26.3 Lattice Paths: Binomial Coefficients
( m n ) is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
Table 26.3.1: Binomial coefficients ( m n ) .
m n
6 1 6 15 20 15 6 1
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
m n
3 1 4 10 20 35 56 84 120 165
24: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
25: 25.11 Hurwitz Zeta Function
See accompanying text
Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
where H n are the harmonic numbers:
25.11.33 H n = k = 1 n k 1 .
26: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • 27: 26.7 Set Partitions: Bell Numbers
    §26.7 Set Partitions: Bell Numbers
    §26.7(i) Definitions
    §26.7(ii) Generating Function
    §26.7(iii) Recurrence Relation
    §26.7(iv) Asymptotic Approximation
    28: Bibliography N
  • W. Narkiewicz (2000) The Development of Prime Number Theory: From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • Number Theory Web (website)
  • 29: 26.8 Set Partitions: Stirling Numbers
    §26.8 Set Partitions: Stirling Numbers
    §26.8(i) Definitions
    §26.8(v) Identities
    §26.8(vi) Relations to Bernoulli Numbers
    30: 8 Incomplete Gamma and Related
    Functions