About the Project

Gauss%E2%80%93Christoffel%20quadrature

AdvancedHelp

(0.002 seconds)

11—20 of 233 matching pages

11: 15.4 Special Cases
β–Ί
15.4.1 F ⁑ ( 1 , 1 ; 2 ; z ) = z 1 ⁒ ln ⁑ ( 1 z ) ,
β–Ί
15.4.2 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 1 + z 1 z ) ,
β–Ί
15.4.3 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = z 1 ⁒ arctan ⁑ z ,
β–Ί
F ⁑ ( a , b ; a ; z ) = ( 1 z ) b ,
β–Ί
F ⁑ ( a , b ; b ; z ) = ( 1 z ) a ,
12: 8.17 Incomplete Beta Functions
β–Ί
8.17.7 B x ⁑ ( a , b ) = x a a ⁒ F ⁑ ( a , 1 b ; a + 1 ; x ) ,
β–Ί
8.17.8 B x ⁑ ( a , b ) = x a ⁒ ( 1 x ) b a ⁒ F ⁑ ( a + b , 1 ; a + 1 ; x ) ,
β–Ί
8.17.9 B x ⁑ ( a , b ) = x a ⁒ ( 1 x ) b 1 a ⁒ F ⁑ ( 1 , 1 b a + 1 ; x x 1 ) .
β–ΊFor the hypergeometric function F ⁑ ( a , b ; c ; z ) see §15.2(i). … β–Ί
8.17.24 I x ⁑ ( m , n ) = ( 1 x ) n ⁒ j = m ( n + j 1 j ) ⁒ x j , m , n positive integers; 0 x < 1 .
13: 15.1 Special Notation
14: 15.16 Products
β–Ί β–Ί
15.16.2 ( 1 z ) a + b c ⁒ F ⁑ ( 2 ⁒ a , 2 ⁒ b ; 2 ⁒ c 1 ; z ) = s = 0 A s ⁒ z s , | z | < 1 .
β–Ί
15.16.3 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; ΢ ) = s = 0 ( a ) s ⁒ ( b ) s ⁒ ( c a ) s ⁒ ( c b ) s ( c ) s ⁒ ( c ) 2 ⁒ s ⁒ s ! ⁒ ( z ⁒ ΢ ) s ⁒ F ⁑ ( a + s , b + s c + 2 ⁒ s ; z + ΢ z ⁒ ΢ ) , | z | < 1 , | ΢ | < 1 , | z + ΢ z ⁒ ΢ | < 1 .
β–Ί
15.16.4 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; z ) + a ⁒ b ⁒ ( a c ) ⁒ ( b c ) c 2 ⁒ ( 1 c 2 ) ⁒ z 2 ⁒ F ⁑ ( 1 + a , 1 + b 2 + c ; z ) ⁒ F ⁑ ( 1 a , 1 b 2 c ; z ) = 1 .
β–Ί
15.16.5 F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) + F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) = Ξ“ ⁑ ( 1 + Ξ» + ΞΌ ) ⁒ Ξ“ ⁑ ( 1 + Ξ½ + ΞΌ ) Ξ“ ⁑ ( Ξ» + ΞΌ + Ξ½ + 3 2 ) ⁒ Ξ“ ⁑ ( 1 2 + Ξ½ ) , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 z ) | < Ο€ .
15: Bibliography G
β–Ί
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • β–Ί
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • β–Ί
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • β–Ί
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • β–Ί
  • G. H. Golub and J. H. Welsch (1969) Calculation of Gauss quadrature rules. Math. Comp. 23 (106), pp. 221–230.
  • 16: 15.2 Definitions and Analytical Properties
    β–Ί
    §15.2(i) Gauss Series
    β–ΊThe hypergeometric function F ⁑ ( a , b ; c ; z ) is defined by the Gauss seriesβ–ΊOn the circle of convergence, | z | = 1 , the Gauss series: … β–ΊThe same properties hold for F ⁑ ( a , b ; c ; z ) , except that as a function of c , F ⁑ ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … β–ΊFormula (15.4.6) reads F ⁑ ( a , b ; a ; z ) = ( 1 z ) b . …
    17: 16.6 Transformations of Variable
    β–Ί
    16.6.1 F 2 3 ⁑ ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( a b c + 1 , 1 2 ⁒ a , 1 2 ⁒ ( a + 1 ) a b + 1 , a c + 1 ; 4 ⁒ z ( 1 z ) 2 ) .
    β–Ί
    16.6.2 F 2 3 ⁑ ( a , 2 ⁒ b a 1 , 2 2 ⁒ b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( 1 3 ⁒ a , 1 3 ⁒ a + 1 3 , 1 3 ⁒ a + 2 3 b , a b + 3 2 ; 27 ⁒ z 4 ⁒ ( 1 z ) 3 ) .
    β–ΊFor Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
    18: 16.7 Relations to Other Functions
    β–ΊFurther representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
    19: 16.10 Expansions in Series of F q p Functions
    §16.10 Expansions in Series of F q p Functions
    β–Ί
    16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
    β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
    20: 27.10 Periodic Number-Theoretic Functions
    β–ΊAnother generalization of Ramanujan’s sum is the Gauss sum G ⁑ ( n , Ο‡ ) associated with a Dirichlet character Ο‡ ( mod k ) . …In particular, G ⁑ ( n , Ο‡ 1 ) = c k ⁑ ( n ) . β–Ί G ⁑ ( n , Ο‡ ) is separable for some n if … β–ΊFor a primitive character Ο‡ ( mod k ) , G ⁑ ( n , Ο‡ ) is separable for every n , and … β–ΊConversely, if G ⁑ ( n , Ο‡ ) is separable for every n , then Ο‡ is primitive (mod k ). …