About the Project

Gauss%20quadrature

AdvancedHelp

(0.001 seconds)

21—30 of 217 matching pages

21: Bibliography T
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • L. N. Trefethen (2011) Six myths of polynomial interpolation and quadrature. Math. Today (Southend-on-Sea) 47 (4), pp. 184–188.
  • 22: 15.1 Special Notation
    23: 20 Theta Functions
    Chapter 20 Theta Functions
    24: 15.16 Products
    15.16.3 F ( a , b c ; z ) F ( a , b c ; ζ ) = s = 0 ( a ) s ( b ) s ( c a ) s ( c b ) s ( c ) s ( c ) 2 s s ! ( z ζ ) s F ( a + s , b + s c + 2 s ; z + ζ z ζ ) , | z | < 1 , | ζ | < 1 , | z + ζ z ζ | < 1 .
    15.16.4 F ( a , b c ; z ) F ( a , b c ; z ) + a b ( a c ) ( b c ) c 2 ( 1 c 2 ) z 2 F ( 1 + a , 1 + b 2 + c ; z ) F ( 1 a , 1 b 2 c ; z ) = 1 .
    15.16.5 F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) + F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) = Γ ( 1 + λ + μ ) Γ ( 1 + ν + μ ) Γ ( λ + μ + ν + 3 2 ) Γ ( 1 2 + ν ) , | ph z | < π , | ph ( 1 z ) | < π .
    25: 15.2 Definitions and Analytical Properties
    §15.2(i) Gauss Series
    The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss seriesOn the circle of convergence, | z | = 1 , the Gauss series: … The same properties hold for F ( a , b ; c ; z ) , except that as a function of c , F ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … Formula (15.4.6) reads F ( a , b ; a ; z ) = ( 1 z ) b . …
    26: 16.6 Transformations of Variable
    16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
    16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
    For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
    27: Bibliography X
  • H. Xiao, V. Rokhlin, and N. Yarvin (2001) Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 17 (4), pp. 805–838.
  • 28: 16.7 Relations to Other Functions
    Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
    29: 18.40 Methods of Computation
    A numerical approach to the recursion coefficients and quadrature abscissas and weights
    These quadrature weights and abscissas will then allow construction of a convergent sequence of approximations to w ( x ) , as will be considered in the following paragraphs. … The quadrature abscissas x n and weights w n then follow from the discussion of §3.5(vi). … Having now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ( x ) . … The quadrature points and weights can be put to a more direct and efficient use. …
    30: 16.10 Expansions in Series of F q p Functions
    §16.10 Expansions in Series of F q p Functions
    16.10.1 F q + s p + r ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ζ ) = k = 0 ( 𝐚 ) k ( α ) k ( β ) k ( z ) k ( 𝐛 ) k ( γ + k ) k k ! F q + 1 p + 2 ( α + k , β + k , a 1 + k , , a p + k γ + 2 k + 1 , b 1 + k , , b q + k ; z ) F s + 2 r + 2 ( k , γ + k , c 1 , , c r α , β , d 1 , , d s ; ζ ) .
    Expansions of the form n = 1 ( ± 1 ) n F p + 1 p ( 𝐚 ; 𝐛 ; n 2 z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).