About the Project

Gauss%20multiplication%20formula

AdvancedHelp

(0.001 seconds)

21—30 of 413 matching pages

21: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
22: Bibliography G
  • C. F. Gauss (1863) Werke. Band II. pp. 436–447 (German).
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 23: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    §35.8(iii) F 2 3 Case
    Kummer Transformation
    Pfaff–Saalschütz Formula
    Thomae Transformation
    Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
    24: 15.8 Transformations of Variable
    The transformation formulas between two hypergeometric functions in Group 2, or two hypergeometric functions in Group 3, are the linear transformations (15.8.1). …
    15.8.13 F ( a , b 2 b ; z ) = ( 1 1 2 z ) a F ( 1 2 a , 1 2 a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ( 1 z ) | < π ,
    15.8.14 F ( a , b 2 b ; z ) = ( 1 z ) a / 2 F ( 1 2 a , b 1 2 a b + 1 2 ; z 2 4 z 4 ) , | ph ( 1 z ) | < π .
    15.8.15 F ( a , b a b + 1 ; z ) = ( 1 + z ) a F ( 1 2 a , 1 2 a + 1 2 a b + 1 ; 4 z ( 1 + z ) 2 ) , | z | < 1 ,
    15.8.16 F ( a , b a b + 1 ; z ) = ( 1 z ) a F ( 1 2 a , 1 2 a b + 1 2 a b + 1 ; 4 z ( 1 z ) 2 ) , | z | < 1 .
    25: 16.4 Argument Unity
    The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if … The function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … For generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … Balanced F 3 4 ( 1 ) series have transformation formulas and three-term relations. … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …
    26: 3.5 Quadrature
    §3.5(v) Gauss Quadrature
    Gauss–Legendre Formula
    Gauss–Chebyshev Formula
    Gauss–Jacobi Formula
    Gauss–Laguerre Formula
    27: 8.17 Incomplete Beta Functions
    8.17.8 B x ( a , b ) = x a ( 1 x ) b a F ( a + b , 1 ; a + 1 ; x ) ,
    8.17.9 B x ( a , b ) = x a ( 1 x ) b 1 a F ( 1 , 1 b a + 1 ; x x 1 ) .
    For the hypergeometric function F ( a , b ; c ; z ) see §15.2(i). …
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    28: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 29: 15.9 Relations to Other Functions
    The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
    30: 31.7 Relations to Other Functions
    §31.7(i) Reductions to the Gauss Hypergeometric Function
    Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
    31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
    31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
    Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ζ = K , K + i K , and i K , where K and K are related to k as in §19.2(ii).