About the Project

Gaunt integral

AdvancedHelp

(0.001 seconds)

11—20 of 422 matching pages

11: 10.37 Inequalities; Monotonicity
See also Paltsev (1999), Petropoulou (2000), Segura (2011) and Gaunt (2014).
12: Bibliography G
  • J. A. Gaunt (1929) The triplets of helium. Philos. Trans. Roy. Soc. London Ser. A 228, pp. 151–196.
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • M. L. Glasser (1976) Definite integrals of the complete elliptic integral K . J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 313–323.
  • 13: 28.18 Integrals and Integral Equations
    §28.18 Integrals and Integral Equations
    14: 19.35 Other Applications
    §19.35(i) Mathematical
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)).
    §19.35(ii) Physical
    15: 6.1 Special Notation
    Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) .
    16: 25.7 Integrals
    §25.7 Integrals
    For definite integrals of the Riemann zeta function see Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, §3.2), and Prudnikov et al. (1992b, §3.2).
    17: 36.3 Visualizations of Canonical Integrals
    §36.3 Visualizations of Canonical Integrals
    §36.3(i) Canonical Integrals: Modulus
    §36.3(ii) Canonical Integrals: Phase
    In Figure 36.3.13(a) points of confluence of phase contours are zeros of Ψ 2 ( x , y ) ; similarly for other contour plots in this subsection. In Figure 36.3.13(b) points of confluence of all colors are zeros of Ψ 2 ( x , y ) ; similarly for other density plots in this subsection. …
    18: 6.14 Integrals
    §6.14 Integrals
    §6.14(i) Laplace Transforms
    §6.14(ii) Other Integrals
    6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    19: 6.17 Physical Applications
    §6.17 Physical Applications
    Geller and Ng (1969) cites work with applications from diffusion theory, transport problems, the study of the radiative equilibrium of stellar atmospheres, and the evaluation of exchange integrals occurring in quantum mechanics. …Lebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.
    20: 6.5 Further Interrelations
    §6.5 Further Interrelations
    6.5.2 Ei ( x ) = 1 2 ( E 1 ( x + i 0 ) + E 1 ( x i 0 ) ) ,
    6.5.3 1 2 ( Ei ( x ) + E 1 ( x ) ) = Shi ( x ) = i Si ( i x ) ,
    6.5.6 Ci ( z ) = 1 2 ( E 1 ( i z ) + E 1 ( i z ) ) ,