About the Project

Fuchs%E2%80%93Frobenius theory

AdvancedHelp

(0.002 seconds)

1—10 of 164 matching pages

1: 31.18 Methods of Computation
Independent solutions of (31.2.1) can be computed in the neighborhoods of singularities from their FuchsFrobenius expansions (§31.3), and elsewhere by numerical integration of (31.2.1). …
2: 16.23 Mathematical Applications
A variety of problems in classical mechanics and mathematical physics lead to Picard–Fuchs equations. … …
§16.23(iv) Combinatorics and Number Theory
3: 31.3 Basic Solutions
§31.3(i) FuchsFrobenius Solutions at z = 0
§31.3(ii) FuchsFrobenius Solutions at Other Singularities
4: 31.11 Expansions in Series of Hypergeometric Functions
Let w ( z ) be any FuchsFrobenius solution of Heun’s equation. …The Fuchs-Frobenius solutions at are … Every FuchsFrobenius solution of Heun’s equation (31.2.1) can be represented by a series of Type I. …Then the FuchsFrobenius solution at belonging to the exponent α has the expansion (31.11.1) with … Such series diverge for FuchsFrobenius solutions. …
5: 2.7 Differential Equations
§2.7(i) Regular Singularities: FuchsFrobenius Theory
In theory either pair may be used to construct any other solution …
6: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • P. J. Forrester and N. S. Witte (2001) Application of the τ -function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Comm. Math. Phys. 219 (2), pp. 357–398.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • R. Fuchs (1907) Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (3), pp. 301–321.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 7: 31.10 Integral Equations and Representations
    FuchsFrobenius solutions W m ( z ) = κ ~ m z α H ( 1 / a , q m ; α , α γ + 1 , α β + 1 , δ ; 1 / z ) are represented in terms of Heun functions w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) by (31.10.1) with W ( z ) = W m ( z ) , w ( z ) = w m ( z ) , and with kernel chosen from …
    8: 8.23 Statistical Applications
    In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319).
    9: 27.2 Functions
    §27.2(i) Definitions
    This is the number of positive integers n that are relatively prime to n ; ϕ ( n ) is Euler’s totient. …
    27.2.8 a ϕ ( n ) 1 ( mod n ) ,
    27.2.9 d ( n ) = d | n 1
    10: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.