About the Project

Fiat Wallet Customer 1-201-63O-7680 Support Number Fiat Wallet Helpline Toll Free Number

AdvancedHelp

(0.005 seconds)

31—40 of 252 matching pages

31: 24.14 Sums
§24.14 Sums
§24.14(i) Quadratic Recurrence Relations
24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
§24.14(ii) Higher-Order Recurrence Relations
For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
32: 26.1 Special Notation
( m n ) binomial coefficient.
m n Eulerian number.
B ( n ) Bell number.
C ( n ) Catalan number.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
33: 27.3 Multiplicative Properties
§27.3 Multiplicative Properties
Except for ν ( n ) , Λ ( n ) , p n , and π ( x ) , the functions in §27.2 are multiplicative, which means f ( 1 ) = 1 and …
27.3.2 f ( n ) = r = 1 ν ( n ) f ( p r a r ) .
27.3.6 σ α ( n ) = r = 1 ν ( n ) p r α ( 1 + a r ) 1 p r α 1 , α 0 .
27.3.10 f ( n ) = r = 1 ν ( n ) ( f ( p r ) ) a r .
34: 27.1 Special Notation
§27.1 Special Notation
d , k , m , n positive integers (unless otherwise indicated).
p , p 1 , p 2 , prime numbers (or primes): integers ( > 1 ) with only two positive integer divisors, 1 and the number itself.
x , y real numbers.
35: Foreword
Particular attention is called to the generous support of the National Science Foundation, which made possible the participation of experts from academia and research institutes worldwide. …
36: 4.48 Software
All scientific programming languages, libraries, and systems support computation of at least some of the elementary functions in standard floating-point arithmetic (§3.1(i)). …
37: 27.12 Asymptotic Formulas: Primes
§27.12 Asymptotic Formulas: Primes
Prime Number Theorem
The number of such primes not exceeding x is … There are infinitely many Carmichael numbers.
38: 27.2 Functions
§27.2(i) Definitions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
§27.2(ii) Tables
39: Bibliography M
  • Magma (website) Computational Algebra Group, School of Mathematics and Statistics, University of Sydney, Australia.
  • A. Máté, P. Nevai, and W. Van Assche (1991) The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators. Rocky Mountain J. Math. 21 (1), pp. 501–527.
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • L. Moser and M. Wyman (1958a) Asymptotic development of the Stirling numbers of the first kind. J. London Math. Soc. 33, pp. 133–146.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • 40: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    24.5.3 k = 0 n 1 ( n k ) B k = 0 , n = 2 , 3 , ,
    24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
    §24.5(ii) Other Identities
    §24.5(iii) Inversion Formulas