About the Project

Eulerian%20numbers

AdvancedHelp

(0.003 seconds)

1—10 of 274 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 26.14 Permutations: Order Notation
The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …
§26.14(ii) Generating Functions
§26.14(iii) Identities
§26.14(iv) Special Values
3: 26.1 Special Notation
( m n ) binomial coefficient.
m n Eulerian number.
B ( n ) Bell number.
C ( n ) Catalan number.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
4: 24.4 Basic Properties
§24.4(iv) Finite Expansions
24.4.15 B 2 n = 2 n 2 2 n ( 2 2 n 1 ) k = 0 n 1 ( 2 n 1 2 k ) E 2 k ,
24.4.16 E 2 n = 1 2 n + 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 1 ) B 2 k k ,
§24.4(ix) Relations to Other Functions
For the relation of Bernoulli numbers to the Riemann zeta function see §25.6, and to the Eulerian numbers see (26.14.11).
5: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
C ( n ) is the Catalan number. …
§26.5(ii) Generating Function
§26.5(iii) Recurrence Relations
6: 27.15 Chinese Remainder Theorem
§27.15 Chinese Remainder Theorem
This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
7: 27.2 Functions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
§27.2(ii) Tables
8: 26.6 Other Lattice Path Numbers
§26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
Motzkin Number M ( n )
Narayana Number N ( n , k )
§26.6(iv) Identities
9: 24.20 Tables
§24.20 Tables
Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
10: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.