About the Project

Dunkl type operator

AdvancedHelp

(0.001 seconds)

11—20 of 164 matching pages

11: 1.3 Determinants, Linear Operators, and Spectral Expansions
Of importance for special functions are infinite determinants of Hill’s type. These have the property that the double series …Hill-type determinants always converge. …
§1.3(iv) Matrices as Linear Operators
Linear Operators in Finite Dimensional Vector Spaces
12: Bibliography K
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • I. M. Krichever and S. P. Novikov (1989) Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces. Funktsional. Anal. i Prilozhen. 23 (1), pp. 24–40 (Russian).
  • 13: 18.27 q -Hahn Class
    The q -Hahn class OP’s comprise systems of OP’s { p n ( x ) } , n = 0 , 1 , , N , or n = 0 , 1 , 2 , , that are eigenfunctions of a second order q -difference operator. …In the q -Hahn class OP’s the role of the operator d / d x in the Jacobi, Laguerre, and Hermite cases is played by the q -derivative 𝒟 q , as defined in (17.2.41). …
    18.27.6 P n ( α , β ) ( x ; c , d ; q ) = c n q ( α + 1 ) n ( q α + 1 , q α + 1 c 1 d ; q ) n ( q , q ; q ) n P n ( q α + 1 c 1 x ; q α , q β , q α c 1 d ; q ) ,
    18.27.12_5 lim q 1 P n ( α , β ) ( x ; c , d ; q ) = ( c + d 2 ) n P n ( α , β ) ( 2 x c + d c + d ) .
    14: Publications
  • D. W. Lozier (2000) The DLMF Project: A New Initiative in Classical Special Functions, in Special Functions—Proceedings of the International Workshop, Hong Kong, June 21-25, 1999 (C. Dunkl, M. Ismail, R. Wong, eds.), World Scientific, pp. 207–220. PDF
  • 15: 27.19 Methods of Computation: Factorization
    Techniques for factorization of integers fall into three general classes: Deterministic algorithms, Type I probabilistic algorithms whose expected running time depends on the size of the smallest prime factor, and Type II probabilistic algorithms whose expected running time depends on the size of the number to be factored. … Type I probabilistic algorithms include the Brent–Pollard rho algorithm (also called Monte Carlo method), the Pollard p 1 algorithm, and the Elliptic Curve Method (ecm). … Type II probabilistic algorithms for factoring n rely on finding a pseudo-random pair of integers ( x , y ) that satisfy x 2 y 2 ( mod n ) . …As of January 2009 the snfs holds the record for the largest integer that has been factored by a Type II probabilistic algorithm, a 307-digit composite integer. …The largest composite numbers that have been factored by other Type II probabilistic algorithms are a 63-digit integer by cfrac, a 135-digit integer by mpqs, and a 182-digit integer by gnfs. …
    16: 31.10 Integral Equations and Representations
    §31.10(i) Type I
    31.10.3 ( 𝒟 z 𝒟 t ) 𝒦 = 0 ,
    where 𝒟 z is Heun’s operator in the variable z : …
    §31.10(ii) Type II
    31.10.14 ( ( t z ) 𝒟 s + ( z s ) 𝒟 t + ( s t ) 𝒟 z ) 𝒦 = 0 ,
    17: Bibliography H
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • G. J. Heckman (1991) An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103 (2), pp. 341–350.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • P. Holmes and D. Spence (1984) On a Painlevé-type boundary-value problem. Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
  • 18: 3.9 Acceleration of Convergence
    It should be borne in mind that a sequence (series) transformation can be effective for one type of sequence (series) but may not accelerate convergence for another type. …
    3.9.2 S = k = 0 ( 1 ) k 2 k 1 Δ k a 0 ,
    Here Δ is the forward difference operator:
    3.9.3 Δ k a 0 = Δ k 1 a 1 Δ k 1 a 0 , k = 1 , 2 , .
    3.9.4 Δ k a 0 = m = 0 k ( 1 ) m ( k m ) a k m .
    19: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • D. P. Gupta and M. E. Muldoon (2000) Riccati equations and convolution formulae for functions of Rayleigh type. J. Phys. A 33 (7), pp. 1363–1368.
  • 20: 2.9 Difference Equations
    2.9.2 Δ 2 w ( n ) + ( 2 + f ( n ) ) Δ w ( n ) + ( 1 + f ( n ) + g ( n ) ) w ( n ) = 0 , n = 0 , 1 , 2 , ,
    in which Δ is the forward difference operator3.6(i)). …
    §2.9(iii) Other Approximations