About the Project

Dirac%20delta%20function

AdvancedHelp

(0.003 seconds)

11—20 of 967 matching pages

11: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
12: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
13: 5.12 Beta Function
§5.12 Beta Function
Euler’s Beta Integral
See accompanying text
Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
See accompanying text
Figure 5.12.2: t -plane. Contour for second loop integral for the beta function. Magnify
Pochhammer’s Integral
14: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
15: 4.2 Definitions
§4.2(iii) The Exponential Function
§4.2(iv) Powers
Powers with General Bases
16: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
The Riemann zeta function is a special case: … As a in the sector | ph a | π δ ( < π ) , with s ( 1 ) and δ fixed, we have the asymptotic expansion … Similarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
17: 8.17 Incomplete Beta Functions
§8.17 Incomplete Beta Functions
§8.17(ii) Hypergeometric Representations
§8.17(iii) Integral Representation
§8.17(iv) Recurrence Relations
§8.17(vi) Sums
18: 12.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
δ arbitrary small positive constant.
Unless otherwise noted, primes indicate derivatives with respect to the variable, and fractional powers take their principal values. The main functions treated in this chapter are the parabolic cylinder functions (PCFs), also known as Weber parabolic cylinder functions: U ( a , z ) , V ( a , z ) , U ¯ ( a , z ) , and W ( a , z ) . …An older notation, due to Whittaker (1902), for U ( a , z ) is D ν ( z ) . …
19: 30.1 Special Notation
(For other notation see Notation for the Special Functions.) … The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively.
Other Notations
20: 12.14 The Function W ( a , x )
§12.14 The Function W ( a , x )
In the following expansions, obtained from Olver (1959), μ is large and positive, and δ is again an arbitrary small positive constant. … uniformly for t [ 1 + δ , ) . … uniformly for t [ 1 + δ , 1 δ ] , with η given by (12.10.23) and 𝒜 ~ s ( t ) given by (12.10.24). … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). …