About the Project

Dirac%20delta%20distribution

AdvancedHelp

(0.002 seconds)

11—20 of 321 matching pages

11: 2.6 Distributional Methods
§2.6 Distributional Methods
The Dirac delta distribution in (2.6.17) is given by … Furthermore, K + contains the distributions H , δ , and t λ , t > 0 , for any real (or complex) number λ , where H is the distribution associated with the Heaviside function H ( t ) 1.16(iv)), and t λ is the distribution defined by (2.6.12)–(2.6.14), depending on the value of λ . Since δ = 𝐷 H , it follows that for μ 1 , 2 , , … For rigorous derivations of these results and also order estimates for δ n ( x ) , see Wong (1979) and Wong (1989, Chapter 6).
12: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
of the Dirac delta distribution. … Applying the representation (1.17.13), now symmetrized as in (1.17.14), as 1 x δ ( x y ) = 1 x y δ ( x y ) , … These latter results also correspond to use of the δ ( x y ) as defined in (1.17.12_1) and (1.17.12_2). … Thus, and this is a case where q ( x ) is not continuous, if q ( x ) = α δ ( x a ) , α > 0 , there will be an L 2 eigenfunction localized in the vicinity of x = a , with a negative eigenvalue, thus disjoint from the continuous spectrum on [ 0 , ) . … For fixed angular momentum the appropriate self-adjoint extension of the above operator may have both a discrete spectrum of negative eigenvalues λ n , n = 0 , 1 , , N 1 , with corresponding L 2 ( [ 0 , ) , r 2 d r ) eigenfunctions ϕ n ( r ) , and also a continuous spectrum λ [ 0 , ) , with Dirac-delta normalized eigenfunctions ϕ λ ( r ) , also with measure r 2 d r . …
13: Bibliography G
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • M. Goano (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Software 21 (3), pp. 221–232.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 14: 33.1 Special Notation
    k , nonnegative integers.
    δ ( x ) Dirac delta; see §1.17.
    15: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • L. W. Fullerton and G. A. Rinker (1986) Generalized Fermi-Dirac integrals—FD, FDG, FDH. Comput. Phys. Comm. 39 (2), pp. 181–185.
  • 16: Bibliography N
  • A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 17: 8 Incomplete Gamma and Related
    Functions
    18: 28 Mathieu Functions and Hill’s Equation
    19: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • R. B. Dingle (1957b) The Fermi-Dirac integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η + 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 225–239.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 20: 25.19 Tables
  • Morris (1979) tabulates Li 2 ( x ) 25.12(i)) for ± x = 0.02 ( .02 ) 1 ( .1 ) 6 to 30D.

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.