About the Project

Coulomb radial functions

AdvancedHelp

(0.004 seconds)

11—20 of 22 matching pages

11: 33.12 Asymptotic Expansions for Large η
33.12.2 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( 1 + B 1 μ + B 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( A 1 μ + A 2 μ 2 + ) } ,
33.12.3 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( B 1 + x A 1 μ + B 2 + x A 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( B 1 + A 1 μ + B 2 + A 2 μ 2 + ) } ,
33.12.6 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 1 3 ) ω 1 / 2 2 π ( 1 2 35 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 4 8 2025 1 ω 6 5792 46 06875 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 10 ) ,
33.12.7 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 2 3 ) 2 π ω 1 / 2 ( ± 1 + 1 15 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 2 ± 2 14175 1 ω 6 + 1436 23 38875 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 8 ± ) ,
12: 33.9 Expansions in Series of Bessel Functions
33.9.3 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 η ) 2 + 1 ρ k = 2 + 1 b k t k / 2 I k ( 2 t ) , η > 0 ,
33.9.4 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 | η | ) 2 + 1 ρ k = 2 + 1 b k t k / 2 J k ( 2 t ) , η < 0 .
33.9.6 G ( η , ρ ) ρ ( + 1 2 ) λ ( η ) C ( η ) k = 2 + 1 ( 1 ) k b k t k / 2 K k ( 2 t ) ,
13: 33.16 Connection Formulas
33.16.1 F ( η , ρ ) = ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 f ( 1 / η 2 , ; η ρ ) ,
33.16.6 f ( ϵ , ; r ) = ( 1 ) + 1 ( 2 π τ e 2 π / τ 1 A ( ϵ , ) ) 1 / 2 F ( 1 / τ , τ r ) ,
14: Bibliography S
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • 15: 18.39 Applications in the Physical Sciences
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    c) Spherical Radial Coulomb Wave Functions
    The radial Coulomb wave functions R n , l ( r ) , solutions of …
    d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
    The bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the δ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. …
    16: 33.23 Methods of Computation
    §33.23 Methods of Computation
    The methods used for computing the Coulomb functions described below are similar to those in §13.29. … Inside the turning points, that is, when ρ < ρ tp ( η , ) , there can be a loss of precision by a factor of approximately | G | 2 . … WKBJ approximations (§2.7(iii)) for ρ > ρ tp ( η , ) are presented in Hull and Breit (1959) and Seaton and Peach (1962: in Eq. … Hull and Breit (1959) and Barnett (1981b) give WKBJ approximations for F 0 and G 0 in the region inside the turning point: ρ < ρ tp ( η , ) .
    17: Bibliography B
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • 18: Bibliography Y
  • G. D. Yakovleva (1969) Tables of Airy Functions and Their Derivatives. Izdat. Nauka, Moscow (Russian).
  • H. A. Yamani and L. Fishman (1975) J -matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, pp. 410–420.
  • H. A. Yamani and W. P. Reinhardt (1975) L -squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian. Phys. Rev. A 11 (4), pp. 1144–1156.
  • F. L. Yost, J. A. Wheeler, and G. Breit (1936) Coulomb wave functions in repulsive fields. Phys. Rev. 49 (2), pp. 174–189.
  • A. Young and A. Kirk (1964) Bessel Functions. Part IV: Kelvin Functions. Royal Society Mathematical Tables, Volume 10, Cambridge University Press, Cambridge-New York.
  • 19: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22(i) Schrödinger Equation
    At positive energies E > 0 , ρ 0 , and: … Positive-energy functions correspond to processes such as Rutherford scattering and Coulomb excitation of nuclei (Alder et al. (1956)), and atomic photo-ionization and electron-ion collisions (Bethe and Salpeter (1977)). …
    §33.22(iv) Klein–Gordon and Dirac Equations
    20: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Functions f , g L 2 ( X , d α ) for which f g , f g = 0 are identified with each other. … Eigenfunctions corresponding to the continuous spectrum are non- L 2 functions. …
    Example 2: Radial 3D Schrödinger operators, including the Coulomb potential
    In unusual cases N = , even for all , such as in the case of the Schrödinger–Coulomb problem ( V = r 1 ) discussed in §18.39 and §33.14, where the point spectrum actually accumulates at the onset of the continuum at λ = 0 , implying an essential singularity, as well as a branch point, in matrix elements of the resolvent, (1.18.66). … …