About the Project

Chebyshev polynomials

AdvancedHelp

(0.006 seconds)

31—40 of 47 matching pages

31: Bibliography B
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • 32: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 33: Bibliography D
  • G. Delic (1979a) Chebyshev expansion of the associated Legendre polynomial P L M ( x ) . Comput. Phys. Comm. 18 (1), pp. 63–71.
  • 34: 8.27 Approximations
  • Luke (1969b, pp. 25, 40–41) gives Chebyshev-series expansions for Γ ( a , ω z ) (by specifying parameters) with 1 ω < , and γ ( a , ω z ) with 0 ω 1 ; see also Temme (1994b, §3).

  • Luke (1969b, p. 186) gives hypergeometric polynomial representations that converge uniformly on compact subsets of the z -plane that exclude z = 0 and are valid for | ph z | < π .

  • Luke (1975, p. 103) gives Chebyshev-series expansions for E 1 ( x ) and related functions for x 5 .

  • Verbeeck (1970) gives polynomial and rational approximations for E p ( x ) = ( e x / x ) P ( z ) , approximately, where P ( z ) denotes a quotient of polynomials of equal degree in z = x 1 .

  • 35: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1990a) Asymptotic estimates for Laguerre polynomials. Z. Angew. Math. Phys. 41 (1), pp. 114–126.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 36: 11.15 Approximations
    §11.15(i) Expansions in Chebyshev Series
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ( x ) , 𝐋 1 ( x ) , 0 x 16 , and I 0 ( x ) 𝐋 0 ( x ) , I 1 ( x ) 𝐋 1 ( x ) , x 16 ; the coefficients are to 20D.

  • §11.15(ii) Rational and Polynomial Approximations
  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 37: 19.38 Approximations
    Minimax polynomial approximations (§3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. …Cody (1965b) gives Chebyshev-series expansions (§3.11(ii)) with maximum precision 25D. …
    38: 5.23 Approximations
    Hart et al. (1968) gives minimax polynomial and rational approximations to Γ ( x ) and ln Γ ( x ) in the intervals 0 x 1 , 8 x 1000 , 12 x 1000 ; precision is variable. …
    §5.23(ii) Expansions in Chebyshev Series
    Luke (1969b) gives the coefficients to 20D for the Chebyshev-series expansions of Γ ( 1 + x ) , 1 / Γ ( 1 + x ) , Γ ( x + 3 ) , ln Γ ( x + 3 ) , ψ ( x + 3 ) , and the first six derivatives of ψ ( x + 3 ) for 0 x 1 . …Clenshaw (1962) also gives 20D Chebyshev-series coefficients for Γ ( 1 + x ) and its reciprocal for 0 x 1 . …
    39: Bibliography W
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • C. A. Wills, J. M. Blair, and P. L. Ragde (1982) Rational Chebyshev approximations for the Bessel functions J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) . Math. Comp. 39 (160), pp. 617–623.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • 40: 7.24 Approximations
    §7.24(ii) Expansions in Chebyshev Series
  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).