About the Project

Ces%C3%from%20summability

AdvancedHelp

(0.001 seconds)

11—20 of 483 matching pages

11: Guide to Searching the DLMF
β–ΊFrom there you can also access an advanced search page where you can control certain settings, narrowing the search to certain chapters, or restricting the results to equations, graphs, tables, or bibliographic items. … β–Ί
  • The following standard special functions: si, Si, ci, Ci, shi, Shi, ce, Ce, se, Se, ln, Ln, Lommels, LommelS, Jacobiphi, and the list is still growing.

  • 12: 28.5 Second Solutions fe n , ge n
    β–Ί
    28.5.8 𝒲 ⁑ { ce n , fe n } = ce n ⁑ ( 0 , q ) ⁒ fe n ⁑ ( 0 , q ) ,
    β–ΊFor further information on C n ⁑ ( q ) , S n ⁑ ( q ) , and expansions of f n ⁑ ( z , q ) , g n ⁑ ( z , q ) in Fourier series or in series of ce n , se n functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72). … β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 28.5.1: fe 0 ⁑ ( x , 0.5 ) for 0 x 2 ⁒ Ο€ and (for comparison) ce 0 ⁑ ( x , 0.5 ) . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 28.5.2: fe 0 ⁑ ( x , 1 ) for 0 x 2 ⁒ Ο€ and (for comparison) ce 0 ⁑ ( x , 1 ) . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 28.5.3: fe 1 ⁑ ( x , 0.5 ) for 0 x 2 ⁒ Ο€ and (for comparison) ce 1 ⁑ ( x , 0.5 ) . Magnify
    13: 29.12 Definitions
    β–Ί
    29.12.3 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) = 𝐸𝑠 2 ⁒ n + 1 2 ⁒ m + 1 ⁑ ( z , k 2 ) ,
    β–ΊThe superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ⁑ ) , while n m is the number of z -zeros in the open line segment from K ⁑ to K ⁑ + i ⁒ K ⁑ . … β–Ί
    Table 29.12.1: Lamé polynomials.
    β–Ί β–Ίβ–Ίβ–Ί
    Ξ½
    eigenvalue
    h
    eigenfunction
    w ⁑ ( z )
    polynomial
    form
    real
    period
    imag.
    period
    parity of
    w ⁑ ( z )
    parity of
    w ⁑ ( z K ⁑ )
    parity of
    w ⁑ ( z K ⁑ i ⁒ K ⁑ )
    2 ⁒ n + 1 b Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) 𝑐𝐸 Ξ½ m ⁑ ( z , k 2 ) cn ⁑ P ⁑ ( sn 2 ) 4 ⁒ K ⁑ 4 ⁒ i ⁒ K ⁑ even odd even
    β–Ί
    14: 28.8 Asymptotic Expansions for Large q
    β–Ί
    28.8.1 a m ⁑ ( h 2 ) b m + 1 ⁑ ( h 2 ) } 2 ⁒ h 2 + 2 ⁒ s ⁒ h 1 8 ⁒ ( s 2 + 1 ) 1 2 7 ⁒ h ⁒ ( s 3 + 3 ⁒ s ) 1 2 12 ⁒ h 2 ⁒ ( 5 ⁒ s 4 + 34 ⁒ s 2 + 9 ) 1 2 17 ⁒ h 3 ⁒ ( 33 ⁒ s 5 + 410 ⁒ s 3 + 405 ⁒ s ) 1 2 20 ⁒ h 4 ⁒ ( 63 ⁒ s 6 + 1260 ⁒ s 4 + 2943 ⁒ s 2 + 486 ) 1 2 25 ⁒ h 5 ⁒ ( 527 ⁒ s 7 + 15617 ⁒ s 5 + 69001 ⁒ s 3 + 41607 ⁒ s ) + β‹― .
    β–Ί
    ce m ⁑ ( x , h 2 ) = C ^ m ⁒ ( U m ⁑ ( ξ ) + V m ⁑ ( ξ ) ) ,
    β–Ί
    ce m ⁑ ( x , h 2 ) ce m ⁑ ( 0 , h 2 ) = 2 m ( 1 / 2 ) Οƒ m ⁒ ( W m + ⁑ ( x ) ⁒ ( P m ⁑ ( x ) Q m ⁑ ( x ) ) + W m ⁑ ( x ) ⁒ ( P m ⁑ ( x ) + Q m ⁑ ( x ) ) ) ,
    15: 28.13 Graphics
    β–Ί
    §28.13(ii) Solutions ce Ξ½ ⁑ ( x , q ) , se Ξ½ ⁑ ( x , q ) , and me Ξ½ ⁑ ( x , q ) for General Ξ½
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 28.13.3: ce Ξ½ ⁑ ( x , 1 ) for 1 < Ξ½ < 1 , 0 x 2 ⁒ Ο€ . Magnify 3D Help
    16: 28.22 Connection Formulas
    β–Ί
    28.22.1 Mc m ( 1 ) ⁑ ( z , h ) = 2 Ο€ ⁒ 1 g e , m ⁑ ( h ) ⁒ ce m ⁑ ( 0 , h 2 ) ⁒ Ce m ⁑ ( z , h 2 ) ,
    β–Ί β–Ί
    28.22.5 g e , 2 ⁒ m ⁑ ( h ) = ( 1 ) m ⁒ 2 Ο€ ⁒ ce 2 ⁒ m ⁑ ( 1 2 ⁒ Ο€ , h 2 ) A 0 2 ⁒ m ⁑ ( h 2 ) ,
    β–Ί
    28.22.6 g e , 2 ⁒ m + 1 ⁑ ( h ) = ( 1 ) m + 1 ⁒ 2 Ο€ ⁒ ce 2 ⁒ m + 1 ⁑ ( 1 2 ⁒ Ο€ , h 2 ) h ⁒ A 1 2 ⁒ m + 1 ⁑ ( h 2 ) ,
    β–Ί
    fe m ⁑ ( 0 , h 2 ) = 1 2 ⁒ Ο€ ⁒ C m ⁑ ( h 2 ) ⁒ ( g e , m ⁑ ( h ) ) 2 ⁒ ce m ⁑ ( 0 , h 2 ) ,
    17: 29.15 Fourier Series and Chebyshev Series
    β–Ί
    Polynomial 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 )
    β–Ί
    29.15.13 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) = p = 0 n B 2 ⁒ p + 1 ⁒ sin ⁑ ( ( 2 ⁒ p + 1 ) ⁒ Ο• ) .
    β–Ί
    18: 28.20 Definitions and Basic Properties
    β–Ί
    §28.20(ii) Solutions Ce Ξ½ , Se Ξ½ , Me Ξ½ , Fe n , Ge n
    β–Ί
    28.20.3 Ce Ξ½ ⁑ ( z , q ) = ce Ξ½ ⁑ ( ± i ⁒ z , q ) , Ξ½ 1 , 2 , ,
    β–ΊThen from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ΞΆ 1 / 2 ⁒ e ± 2 ⁒ i ⁒ h ⁒ ΞΆ as ΞΆ in the respective sectors | ph ⁑ ( βˆ“ i ⁒ ΞΆ ) | 3 2 ⁒ Ο€ Ξ΄ , Ξ΄ being an arbitrary small positive constant. …
    19: 28.2 Definitions and Basic Properties
    β–Ίβ–Ί
    ce 0 ⁑ ( z , 0 ) = 1 / 2 ,
    β–Ί
    ce n ⁑ ( z , 0 ) = cos ⁑ ( n ⁒ z ) ,
    β–Ί
    28.2.31 0 2 ⁒ Ο€ ce m ⁑ ( x , q ) ⁒ ce n ⁑ ( x , q ) ⁒ d x = 0 , n m ,
    β–Ί
    28.2.34 ce 2 ⁒ n ⁑ ( z , q ) = ( 1 ) n ⁒ ce 2 ⁒ n ⁑ ( 1 2 ⁒ Ο€ z , q ) ,
    20: 1.15 Summability Methods
    β–Ί
    Abel Summability
    β–Ί
    Cesàro Summability
    β–Ί
    Borel Summability
    β–Ί
    Abel Summability
    β–Ί
    Cesàro Summability