About the Project

Ces%C3%from%20means

AdvancedHelp

(0.002 seconds)

11—20 of 493 matching pages

11: 28.9 Zeros
For real q each of the functions ce 2 n ( z , q ) , se 2 n + 1 ( z , q ) , ce 2 n + 1 ( z , q ) , and se 2 n + 2 ( z , q ) has exactly n zeros in 0 < z < 1 2 π . …For q the zeros of ce 2 n ( z , q ) and se 2 n + 1 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n ( q 1 / 4 ( π 2 z ) ) , and the zeros of ce 2 n + 1 ( z , q ) and se 2 n + 2 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n + 1 ( q 1 / 4 ( π 2 z ) ) . …Furthermore, for q > 0 ce m ( z , q ) and se m ( z , q ) also have purely imaginary zeros that correspond uniquely to the purely imaginary z -zeros of J m ( 2 q cos z ) 10.21(i)), and they are asymptotically equal as q 0 and | z | . …
12: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
13: Guide to Searching the DLMF
From there you can also access an advanced search page where you can control certain settings, narrowing the search to certain chapters, or restricting the results to equations, graphs, tables, or bibliographic items. …
  • The following standard special functions: si, Si, ci, Ci, shi, Shi, ce, Ce, se, Se, ln, Ln, Lommels, LommelS, Jacobiphi, and the list is still growing.

  • 14: 28.5 Second Solutions fe n , ge n
    28.5.8 𝒲 { ce n , fe n } = ce n ( 0 , q ) fe n ( 0 , q ) ,
    For further information on C n ( q ) , S n ( q ) , and expansions of f n ( z , q ) , g n ( z , q ) in Fourier series or in series of ce n , se n functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72). …
    See accompanying text
    Figure 28.5.1: fe 0 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 0 ( x , 0.5 ) . Magnify
    See accompanying text
    Figure 28.5.2: fe 0 ( x , 1 ) for 0 x 2 π and (for comparison) ce 0 ( x , 1 ) . Magnify
    See accompanying text
    Figure 28.5.3: fe 1 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 1 ( x , 0.5 ) . Magnify
    15: 29.12 Definitions
    29.12.3 𝑐𝐸 2 n + 1 m ( z , k 2 ) = 𝐸𝑠 2 n + 1 2 m + 1 ( z , k 2 ) ,
    The superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ) , while n m is the number of z -zeros in the open line segment from K to K + i K . …
    Table 29.12.1: Lamé polynomials.
    ν
    eigenvalue
    h
    eigenfunction
    w ( z )
    polynomial
    form
    real
    period
    imag.
    period
    parity of
    w ( z )
    parity of
    w ( z K )
    parity of
    w ( z K i K )
    2 n + 1 b ν 2 m + 1 ( k 2 ) 𝑐𝐸 ν m ( z , k 2 ) cn P ( sn 2 ) 4 K 4 i K even odd even
    16: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    ce m ( x , h 2 ) = C ^ m ( U m ( ξ ) + V m ( ξ ) ) ,
    ce m ( x , h 2 ) ce m ( 0 , h 2 ) = 2 m ( 1 / 2 ) σ m ( W m + ( x ) ( P m ( x ) Q m ( x ) ) + W m ( x ) ( P m ( x ) + Q m ( x ) ) ) ,
    17: 28.13 Graphics
    §28.13(ii) Solutions ce ν ( x , q ) , se ν ( x , q ) , and me ν ( x , q ) for General ν
    See accompanying text
    Figure 28.13.3: ce ν ( x , 1 ) for 1 < ν < 1 , 0 x 2 π . Magnify 3D Help
    18: 28.22 Connection Formulas
    28.22.5 g e , 2 m ( h ) = ( 1 ) m 2 π ce 2 m ( 1 2 π , h 2 ) A 0 2 m ( h 2 ) ,
    28.22.6 g e , 2 m + 1 ( h ) = ( 1 ) m + 1 2 π ce 2 m + 1 ( 1 2 π , h 2 ) h A 1 2 m + 1 ( h 2 ) ,
    fe m ( 0 , h 2 ) = 1 2 π C m ( h 2 ) ( g e , m ( h ) ) 2 ce m ( 0 , h 2 ) ,
    19: 29.15 Fourier Series and Chebyshev Series
    Polynomial 𝑐𝐸 2 n + 1 m ( z , k 2 )
    29.15.13 𝑐𝐸 2 n + 1 m ( z , k 2 ) = p = 0 n B 2 p + 1 sin ( ( 2 p + 1 ) ϕ ) .
    20: 28.20 Definitions and Basic Properties
    §28.20(ii) Solutions Ce ν , Se ν , Me ν , Fe n , Ge n
    28.20.3 Ce ν ( z , q ) = ce ν ( ± i z , q ) , ν 1 , 2 , ,
    Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ζ 1 / 2 e ± 2 i h ζ as ζ in the respective sectors | ph ( i ζ ) | 3 2 π δ , δ being an arbitrary small positive constant. …