About the Project

Cauchy

AdvancedHelp

(0.001 seconds)

11—20 of 36 matching pages

11: 6.2 Definitions and Interrelations
β–Ί
6.2.5 Ei ⁑ ( x ) = ⨍ x e t t ⁒ d t = ⨍ x e t t ⁒ d t ,
β–Ί
6.2.8 li ⁑ ( x ) = ⨍ 0 x d t ln ⁑ t = Ei ⁑ ( ln ⁑ x ) , x > 1 .
12: 2.10 Sums and Sequences
β–ΊFor an extension to integrals with Cauchy principal values see Elliott (1998). … β–Ίand Cauchy’s theorem, we have … β–ΊThese problems can be brought within the scope of §2.4 by means of Cauchy’s integral formula … β–ΊBy allowing the contour in Cauchy’s formula to expand, we find that …
13: 9.10 Integrals
β–Ί
9.10.19 Bi ⁑ ( x ) = 3 ⁒ x 5 / 4 ⁒ e ( 2 / 3 ) ⁒ x 3 / 2 2 ⁒ Ο€ ⁒ ⨍ 0 t 3 / 4 ⁒ e ( 2 / 3 ) ⁒ t 3 / 2 ⁒ Ai ⁑ ( t ) x 3 / 2 t 3 / 2 ⁒ d t , x > 0 ,
β–Ίwhere the last integral is a Cauchy principal value (§1.4(v)). …
14: Bibliography H
β–Ί
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • 15: 18.40 Methods of Computation
    β–Ί
    18.40.6 lim Ξ΅ 0 + a b w ⁑ ( x ) ⁒ d x x + i ⁒ Ξ΅ x ⁒ d x = ⨍ a b w ⁑ ( x ) ⁒ d x x x i ⁒ Ο€ ⁒ w ⁑ ( x ) ,
    16: 1.14 Integral Transforms
    β–Ί
    1.14.3 1 2 ⁒ ( f ⁑ ( u + ) + f ⁑ ( u ) ) = 1 2 ⁒ Ο€ ⁒ ⨍ F ⁑ ( x ) ⁒ e i ⁒ x ⁒ u ⁒ d x ,
    β–Ίwhere the last integral denotes the Cauchy principal value (1.4.25). … β–Ί
    1.14.41 β„‹ ⁑ ( f ) ⁑ ( x ) = β„‹ ⁑ f ⁑ ( x ) = 1 Ο€ ⁒ ⨍ f ⁑ ( t ) t x ⁒ d t ,
    β–Ί
    1.14.44 f ⁑ ( x ) = 1 Ο€ ⁒ ⨍ β„‹ ⁑ f ⁑ ( u ) u x ⁒ d u .
    β–Ί
    Table 1.14.5: Mellin transforms.
    β–Ί β–Ίβ–Ίβ–Ί
    f ⁑ ( x ) 0 x s 1 ⁒ f ⁑ ( x ) ⁒ d x
    1 1 x Ο€ ⁒ cot ⁑ ( s ⁒ Ο€ ) , 0 < ⁑ s < 1 , (Cauchy p. v.)
    β–Ί
    17: 9.12 Scorer Functions
    β–Ί
    9.12.23 Gi ⁑ ( x ) = 4 ⁒ x 2 3 3 / 2 ⁒ Ο€ 2 ⁒ ⨍ 0 K 1 / 3 ⁑ ( t ) ΞΆ 2 t 2 ⁒ d t , x > 0 ,
    β–Ίwhere the last integral is a Cauchy principal value (§1.4(v)). …
    18: 19.20 Special Cases
    β–ΊCases encountered in dynamical problems are usually circular; hyperbolic cases include Cauchy principal values. If x , y , z are permuted so that 0 x < y < z , then the Cauchy principal value of R J is given by …
    19: Bibliography G
    β–Ί
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • 20: 4.2 Definitions
    β–Ί