About the Project

Bessel functions

AdvancedHelp

(0.017 seconds)

41—50 of 208 matching pages

41: 10.5 Wronskians and Cross-Products
§10.5 Wronskians and Cross-Products
10.5.2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) ,
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
42: 10.68 Modulus and Phase Functions
where M ν ( x ) ( > 0 ) , N ν ( x ) ( > 0 ) , θ ν ( x ) , and ϕ ν ( x ) are continuous real functions of x and ν , with the branches of θ ν ( x ) and ϕ ν ( x ) chosen to satisfy (10.68.18) and (10.68.21) as x . …
10.68.11 M ν = ( ν / x ) M ν + M ν + 1 cos ( θ ν + 1 θ ν 1 4 π ) = ( ν / x ) M ν M ν 1 cos ( θ ν 1 θ ν 1 4 π ) ,
10.68.12 θ ν = ( M ν + 1 / M ν ) sin ( θ ν + 1 θ ν 1 4 π ) = ( M ν 1 / M ν ) sin ( θ ν 1 θ ν 1 4 π ) .
43: 10.37 Inequalities; Monotonicity
§10.37 Inequalities; Monotonicity
10.37.1 | K ν ( z ) | < | K μ ( z ) | .
44: 18 Orthogonal Polynomials
45: 10.24 Functions of Imaginary Order
§10.24 Functions of Imaginary Order
Y ~ ν ( x ) = 2 / ( π x ) sin ( x 1 4 π ) + O ( x 3 2 ) .
46: 10.41 Asymptotic Expansions for Large Order
§10.41 Asymptotic Expansions for Large Order
§10.41(i) Asymptotic Forms
§10.41(iv) Double Asymptotic Properties
47: 10.34 Analytic Continuation
§10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
48: 10.27 Connection Formulas
§10.27 Connection Formulas
10.27.1 I n ( z ) = I n ( z ) ,
10.27.3 K ν ( z ) = K ν ( z ) .
Many properties of modified Bessel functions follow immediately from those of ordinary Bessel functions by application of (10.27.6)–(10.27.8).
49: 6.10 Other Series Expansions
§6.10(ii) Expansions in Series of Spherical Bessel Functions
6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.5 Cin ( z ) = n = 1 a n ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
50: 13.24 Series
§13.24(ii) Expansions in Series of Bessel Functions
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
13.24.2 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = 2 2 μ z μ + 1 2 s = 0 p s ( μ ) ( z ) ( 2 κ z ) 2 μ s J 2 μ + s ( 2 κ z ) ,
Additional expansions in terms of Bessel functions are given in Luke (1959). …