About the Project

Bernoulli and Euler numbers

AdvancedHelp

(0.004 seconds)

11—20 of 51 matching pages

11: 17.3 q -Elementary and q -Special Functions
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
12: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. … For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180). …
13: 24.4 Basic Properties
§24.4(iv) Finite Expansions
24.4.15 B 2 n = 2 n 2 2 n ( 2 2 n 1 ) k = 0 n 1 ( 2 n 1 2 k ) E 2 k ,
24.4.16 E 2 n = 1 2 n + 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 1 ) B 2 k k ,
24.4.17 E 2 n = 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 ) B 2 k 2 k .
24.4.31 B n ( 1 4 ) = ( 1 ) n B n ( 3 4 ) = 1 2 1 n 2 n B n n 4 n E n 1 , n = 1 , 2 , .
14: 24.13 Integrals
24.13.5 1 / 4 3 / 4 B n ( t ) d t = E n 2 2 n + 1 .
24.13.8 0 1 E n ( t ) d t = 2 E n + 1 ( 0 ) n + 1 = 4 ( 2 n + 2 1 ) ( n + 1 ) ( n + 2 ) B n + 2 ,
24.13.9 0 1 / 2 E 2 n ( t ) d t = E 2 n + 1 ( 0 ) 2 n + 1 = 2 ( 2 2 n + 2 1 ) B 2 n + 2 ( 2 n + 1 ) ( 2 n + 2 ) ,
24.13.11 0 1 E n ( t ) E m ( t ) d t = ( 1 ) n 4 ( 2 m + n + 2 1 ) m ! n ! ( m + n + 2 ) ! B m + n + 2 .
15: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)). …
16: 24.7 Integral Representations
§24.7(i) Bernoulli and Euler Numbers
24.7.5 B 2 n = ( 1 ) n 2 n ( 2 n 1 ) π 0 t 2 n 2 ln ( 1 e 2 π t ) d t .
17: 24.15 Related Sequences of Numbers
§24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
§24.15(ii) Tangent Numbers
§24.15(iii) Stirling Numbers
§24.15(iv) Fibonacci and Lucas Numbers
18: 24.8 Series Expansions
§24.8(i) Fourier Series
If n = 1 , 2 , and 0 x 1 , then …
§24.8(ii) Other Series
24.8.6 B 4 n + 2 = ( 8 n + 4 ) k = 1 k 4 n + 1 e 2 π k 1 , n = 1 , 2 , ,
24.8.7 B 2 n = ( 1 ) n + 1 4 n 2 2 n 1 k = 1 k 2 n 1 e π k + ( 1 ) k + n , n = 2 , 3 , .
19: 24.17 Mathematical Applications
§24.17(iii) Number Theory
Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …
20: 24.16 Generalizations
§24.16 Generalizations
When x = 0 they reduce to the Bernoulli and Euler numbers of order : …
24.16.13 E n ( x ) = 2 1 n n + 1 B n + 1 , χ 4 ( 2 x 1 ) .
§24.16(iii) Other Generalizations
In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).