Bateman-type sums
(0.001 seconds)
1—10 of 373 matching pages
1: 18.18 Sums
…
►
§18.18(vi) Bateman-Type Sums
►Jacobi
… ►§18.18(viii) Other Sums
… ►See also (18.38.3) for a finite sum of Jacobi polynomials. … ►2: 4.27 Sums
§4.27 Sums
►For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2015, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).3: 4.11 Sums
§4.11 Sums
…4: 4.41 Sums
§4.41 Sums
►For sums of hyperbolic functions see Gradshteyn and Ryzhik (2015, Chapter 1), Hansen (1975, §43), Prudnikov et al. (1986a, §5.3), and Zucker (1979).5: 7.15 Sums
§7.15 Sums
►For sums involving the error function see Hansen (1975, p. 423) and Prudnikov et al. (1986b, vol. 2, pp. 650–651).6: 5.16 Sums
§5.16 Sums
►
5.16.1
…
►For further sums involving the psi function see Hansen (1975, pp. 360–367).
For sums of gamma functions see Andrews et al. (1999, Chapters 2 and 3) and §§15.2(i), 16.2.
►For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
7: 27.10 Periodic Number-Theoretic Functions
…
►An example is Ramanujan’s sum:
…It can also be expressed in terms of the Möbius function as a divisor sum:
…
►More generally, if and are arbitrary, then the sum
…
►Another generalization of Ramanujan’s sum is the Gauss sum
associated with a Dirichlet character .
…
►
is separable for some if
…
8: 24.20 Tables
§24.20 Tables
►Abramowitz and Stegun (1964, Chapter 23) includes exact values of , , ; , , , , 20D; , , 18D. …9: 25.16 Mathematical Applications
…
►