About the Project

Barrett’s

AdvancedHelp

(0.002 seconds)

11—20 of 602 matching pages

11: 11.14 Tables
  • Barrett (1964) tabulates 𝐋 n ( x ) for n = 0 , 1 and x = 0.2 ( .005 ) 4 ( .05 ) 10 ( .1 ) 19.2 to 5 or 6S, x = 6 ( .25 ) 59.5 ( .5 ) 100 to 2S.

  • 12: 31.13 Asymptotic Approximations
    §31.13 Asymptotic Approximations
    For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
    13: 28.16 Asymptotic Expansions for Large q
    §28.16 Asymptotic Expansions for Large q
    Let s = 2 m + 1 , m = 0 , 1 , 2 , , and ν be fixed with m < ν < m + 1 . …
    28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    14: 25.4 Reflection Formulas
    For s 0 , 1 , …
    25.4.3 ξ ( s ) = ξ ( 1 s ) ,
    where ξ ( s ) is Riemann’s ξ -function, defined by:
    25.4.4 ξ ( s ) = 1 2 s ( s 1 ) Γ ( 1 2 s ) π s / 2 ζ ( s ) .
    For s 0 , 1 and k = 1 , 2 , 3 , , …
    15: 25.13 Periodic Zeta Function
    The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real: …where s > 1 if x is an integer, s > 0 otherwise. F ( x , s ) is periodic in x with period 1, and equals ζ ( s ) when x is an integer. …
    25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
    25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
    16: 27.4 Euler Products and Dirichlet Series
    The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): … The Riemann zeta function is the prototype of series of the form
    27.4.4 F ( s ) = n = 1 f ( n ) n s ,
    The function F ( s ) is a generating function, or more precisely, a Dirichlet generating function, for the coefficients. …In (27.4.12) and (27.4.13) ζ ( s ) is the derivative of ζ ( s ) .
    17: 25.1 Special Notation
    k , m , n nonnegative integers.
    s = σ + i t complex variable.
    γ Euler’s constant (§5.2(ii)).
    The main function treated in this chapter is the Riemann zeta function ζ ( s ) . … The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .
    18: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 19: 23.11 Integral Representations
    Let τ = ω 3 / ω 1 and
    f 1 ( s , τ ) = cosh 2 ( 1 2 τ s ) 1 2 e s cosh ( τ s ) + e 2 s ,
    f 2 ( s , τ ) = cos 2 ( 1 2 s ) 1 2 e i τ s cos s + e 2 i τ s .
    23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
    23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
    20: 25.14 Lerch’s Transcendent
    §25.14 Lerch’s Transcendent
    §25.14(i) Definition
    If s is not an integer then | ph a | < π ; if s is a positive integer then a 0 , 1 , 2 , ; if s is a non-positive integer then a can be any complex number. … The Hurwitz zeta function ζ ( s , a ) 25.11) and the polylogarithm Li s ( z ) 25.12(ii)) are special cases: …
    §25.14(ii) Properties