About the Project

Bairstow%20method%20%28for%20zeros%20of%20polynomials%29

AdvancedHelp

(0.003 seconds)

21—30 of 477 matching pages

21: 36 Integrals with Coalescing Saddles
22: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
23: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 24: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ( z ) and I n 1 2 ( z ) in the sector 0 ph z 1 2 π for n = 1 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 25: Publications
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007. PDF
  • B. Saunders and Q. Wang (2010) Tensor Product B-Spline Mesh Generation for Accurate Surface Visualizations in the NIST Digital Library of Mathematical Functions, in Mathematical Methods for Curves and Surfaces, Proceedings of the 2008 International Conference on Mathematical Methods for Curves and Surfaces (MMCS 2008), Lecture Notes in Computer Science, Vol. 5862, (M. Dæhlen, M. Floater., T. Lyche, J. L. Merrien, K. Mørken, L. L. Schumaker, eds), Springer, Berlin, Heidelberg (2010) pp. 385–393. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 26: Bibliography N
  • National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 27: Software Index
    Open Source With Book Commercial
    9.20(iv) Zeros of … a a
    10.77(x) Zeros of Bessel Functions a a
    20 Theta Functions
    28 Mathieu Functions and Hill’s Equation
  • Research Software.

    This is software of narrow scope developed as a byproduct of a research project and subsequently made available at no cost to the public. The software is often meant to demonstrate new numerical methods or software engineering strategies which were the subject of a research project. When developed, the software typically contains capabilities unavailable elsewhere. While the software may be quite capable, it is typically not professionally packaged and its use may require some expertise. The software is typically provided as source code or via a web-based service, and no support is provided.

  • 28: William P. Reinhardt
    Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. …Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    29: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
    30: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.