About the Project

Andrews%E2%80%93Askey%20sum

AdvancedHelp

(0.003 seconds)

11—20 of 473 matching pages

11: Staff
  • George E. Andrews, Pennsylvania State University, Chap. 17

  • Richard A. Askey, University of Wisconsin, Chaps. 1, 5, 16

  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • George E. Andrews, Pennsylvania State University

  • George E. Andrews, Pennsylvania State University, for Chap. 17

  • 12: 17.12 Bailey Pairs
    17.12.1 n = 0 α n γ n = n = 0 β n δ n ,
    β n = j = 0 n α j u n j v n + j ,
    γ n = j = n δ j u j n v j + n .
    17.12.4 n = 0 q n 2 a n β n = 1 ( a q ; q ) n = 0 q n 2 a n α n .
    See Andrews (2000, 2001), Andrews and Berkovich (1998), Andrews et al. (1999), Milne and Lilly (1992), Spiridonov (2002), and Warnaar (1998).
    13: 6 Exponential, Logarithmic, Sine, and
    Cosine Integrals
    14: 17.16 Mathematical Applications
    These and other applications are described in the surveys Andrews (1974, 1986). …
    15: 17.18 Methods of Computation
    Method (2) is very powerful when applicable (Andrews (1976, Chapter 5)); however, it is applicable only rarely. … Shanks (1955) applies such methods in several q -series problems; see Andrews et al. (1986).
    16: Bibliography D
  • M. Deléglise and J. Rivat (1996) Computing π ( x ) : The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 65 (213), pp. 235–245.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 17: 17.14 Constant Term Identities
    Zeilberger–Bressoud Theorem (Andrews q -Dyson Conjecture)
    17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
    17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
    17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
    For additional results of the type (17.14.2)–(17.14.5) see Andrews (1986, Chapter 4).
    18: 26.9 Integer Partitions: Restricted Number and Part Size
    See Andrews (1976, p. 81). …
    26.9.5 n = 0 p k ( n ) q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q q m ,
    26.9.9 p k ( n ) = 1 n t = 1 n p k ( n t ) j | t j k j ,
    where the inner sum is taken over all positive divisors of t that are less than or equal to k . …
    19: 15.17 Mathematical Applications
    In combinatorics, hypergeometric identities classify single sums of products of binomial coefficients. … See Andrews et al. (1999, §3.2). …
    20: 13 Confluent Hypergeometric Functions