About the Project

Anderson localization

AdvancedHelp

(0.002 seconds)

1—10 of 207 matching pages

1: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
Anderson, P. …
2: 19.35 Other Applications
Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)). …
3: Bibliography Q
  • S.-L. Qiu and M. K. Vamanamurthy (1996) Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 27 (3), pp. 823–834.
  • 4: Bibliography
  • G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen (2000) Generalized elliptic integrals and modular equations. Pacific J. Math. 192 (1), pp. 1–37.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990) Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21 (2), pp. 536–549.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a) Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23 (2), pp. 512–524.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992b) Hypergeometric Functions and Elliptic Integrals. In Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.), pp. 48–85.
  • G. D. Anderson and M. K. Vamanamurthy (1985) Inequalities for elliptic integrals. Publ. Inst. Math. (Beograd) (N.S.) 37(51), pp. 61–63.
  • 5: 31.3 Basic Solutions
    H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. If the other exponent is not a positive integer, that is, if γ 0 , 1 , 2 , , then from §2.7(i) it follows that H ( a , q ; α , β , γ , δ ; z ) exists, is analytic in the disk | z | < 1 , and has the Maclaurin expansion … Solutions (31.3.1) and (31.3.5)–(31.3.11) comprise a set of 8 local solutions of (31.2.1): 2 per singular point. …For example, H ( a , q ; α , β , γ , δ ; z ) is equal to … The full set of 192 local solutions of (31.2.1), equivalent in 8 sets of 24, resembles Kummer’s set of 24 local solutions of the hypergeometric equation, which are equivalent in 4 sets of 6 solutions (§15.10(ii)); see Maier (2007).
    6: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Should q ( x ) be bounded but random, leading to Anderson localization, the spectrum could range from being a dense point spectrum to being singular continuous, see Simon (1995), Avron and Simon (1982); a good general reference being Cycon et al. (2008, Ch. 9 and 10). … … Thus, and this is a case where q ( x ) is not continuous, if q ( x ) = α δ ( x a ) , α > 0 , there will be an L 2 eigenfunction localized in the vicinity of x = a , with a negative eigenvalue, thus disjoint from the continuous spectrum on [ 0 , ) . …
    7: 15.17 Mathematical Applications
    See Anderson et al. (1997). …
    8: 4.42 Solution of Triangles
    9: 31.7 Relations to Other Functions
    31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
    Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
    31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
    31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
    31.7.4 H ( 1 2 + i 3 2 , α β ( 1 2 + i 3 6 ) ; α , β , 1 3 ( α + β + 1 ) , 1 3 ( α + β + 1 ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 3 ( α + β + 1 ) ; 1 ( 1 ( 3 2 i 3 2 ) z ) 3 ) .
    10: 10.77 Software
  • Anderson (1982). Fortran.