About the Project

Airy function

AdvancedHelp

(0.008 seconds)

31—40 of 97 matching pages

31: Bibliography Y
  • G. D. Yakovleva (1969) Tables of Airy Functions and Their Derivatives. Izdat. Nauka, Moscow (Russian).
  • 32: Bibliography R
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • 33: 36.13 Kelvin’s Ship-Wave Pattern
    §36.13 Kelvin’s Ship-Wave Pattern
    36.13.8 z ( ρ , ϕ ) = 2 π ( ρ 1 / 3 u ( ϕ ) cos ( ρ f ~ ( ϕ ) ) Ai ( ρ 2 / 3 Δ ( ϕ ) ) ( 1 + O ( 1 / ρ ) ) + ρ 2 / 3 v ( ϕ ) sin ( ρ f ~ ( ϕ ) ) Ai ( ρ 2 / 3 Δ ( ϕ ) ) ( 1 + O ( 1 / ρ ) ) ) , ρ .
    34: 13.21 Uniform Asymptotic Approximations for Large κ
    13.21.22 M κ , μ ( x ) = 1 2 π Γ ( 2 μ + 1 ) Γ ( κ μ + 1 2 ) c ^ ( κ , μ ) Ψ ^ ( κ , μ , x ) ( sin ( κ π μ π ) Ai ( κ 2 3 ζ ^ ) + cos ( κ π μ π ) Bi ( κ 2 3 ζ ^ ) + envBi ( κ 2 3 ζ ^ ) O ( κ 1 ) ) ,
    13.21.24 W κ , μ ( x e π i ) = e ( κ 1 6 ) π i c ^ ( κ , μ ) Ψ ^ ( κ , μ , x ) ( Ai ( κ 2 3 ζ ^ e 2 3 π i ) + envBi ( κ 2 3 ζ ^ ) O ( κ 1 ) ) ,
    13.21.25 W κ , μ ( x e π i ) = e ( κ 1 6 ) π i c ^ ( κ , μ ) Ψ ^ ( κ , μ , x ) ( Ai ( κ 2 3 ζ ^ e 2 3 π i ) + envBi ( κ 2 3 ζ ^ ) O ( κ 1 ) ) ,
    For the functions Ai and Bi see §9.2(i), and for the env functions associated with Ai and Bi see §2.8(iii). … For a uniform asymptotic expansion in terms of Airy functions for W κ , μ ( 4 κ x ) when κ is large and positive, μ is real with | μ | bounded, and x [ δ , ) see Olver (1997b, Chapter 11, Ex. 7.3). …
    35: 36.2 Catastrophes and Canonical Integrals
    Ψ 1 is related to the Airy function9.2):
    36.2.13 Ψ 1 ( x ) = 2 π 3 1 / 3 Ai ( x 3 1 / 3 ) .
    36.2.20 Ψ ( E ) ( x , y , 0 ) = 2 π 2 ( 2 3 ) 2 / 3 ( Ai ( x + i y 12 1 / 3 ) Bi ( x i y 12 1 / 3 ) ) ,
    36.2.21 Ψ ( H ) ( x , y , 0 ) = 4 π 2 3 2 / 3 Ai ( x 3 1 / 3 ) Ai ( y 3 1 / 3 ) .
    Addendum: For further special cases see §36.2(iv)
    36: 33.20 Expansions for Small | ϵ |
    §33.20(iv) Uniform Asymptotic Expansions
    These expansions are in terms of elementary functions, Airy functions, and Bessel functions of orders 2 + 1 and 2 + 2 .
    37: 34.8 Approximations for Large Parameters
    Uniform approximations in terms of Airy functions for the 3 j and 6 j symbols are given in Schulten and Gordon (1975b). …
    38: Bibliography N
  • National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • G. Nemes (2021) Proofs of two conjectures on the real zeros of the cylinder and Airy functions. SIAM J. Math. Anal. 53 (4), pp. 4328–4349.
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations ϵ ( p y ) + ( q + ϵ r ) y = f . Pergamon Press, Oxford.
  • 39: 10.19 Asymptotic Expansions for Large Order
    10.19.9 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 4 3 ν 1 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 P k ( a ) ν 2 k / 3 + 2 5 3 ν e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 Q k ( a ) ν 2 k / 3 ,
    Here Ai and Bi are the Airy functions9.2), and …
    10.19.13 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 5 3 ν 2 3 e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 R k ( a ) ν 2 k / 3 + 2 4 3 ν 4 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 S k ( a ) ν 2 k / 3 ,
    40: 13.6 Relations to Other Functions
    §13.6(iii) Modified Bessel Functions
    13.6.11 U ( 5 6 , 5 3 , 4 3 z 3 / 2 ) = π 3 5 / 6 exp ( 2 3 z 3 / 2 ) 2 2 / 3 z Ai ( z ) ,