About the Project

2022%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%welcom%EF%BF%BD%EF%BF%BD%EF%BF%heun

AdvancedHelp

(0.025 seconds)

1—10 of 18 matching pages

1: Gergő Nemes
In March 2022, Nemes was named Contributing Developer of the NIST Digital Library of Mathematical Functions.
2: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
3: DLMF Project News
error generating summary
4: Richard B. Paris
 2022) was Reader in Mathematics at the University of Abertay Dundee, U. …
5: Bibliography T
  • N.M. Temme and E.J.M. Veling (2022) Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indagationes Mathematicae.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • 6: Diego Dominici
    He was elected as Program Director for the period 2011–2016 and served as OPSF-Talk moderator from 2010–2022 with Bonita Saunders, and co-editor for OPSF-Net from 2006–2015 with Martin Muldoon. …
    7: Errata
    Version 1.1.8 (December 15, 2022)
    Version 1.1.7 (October 15, 2022)
    Version 1.1.6 (June 30, 2022)
    Version 1.1.5 (March 15, 2022)
    Version 1.1.4 (January 15, 2022)
    8: 13.8 Asymptotic Approximations for Large Parameters
    These results follow from Temme (2022), which can also be used to obtain more terms in the expansions. For generalizations in which z is also allowed to be large see Temme and Veling (2022).
    9: 8.18 Asymptotic Expansions of I x ( a , b )
    10: 27.11 Asymptotic Formulas: Partial Sums
    Dirichlet’s divisor problem (unsolved as of 2022) is to determine the least number θ 0 such that the error term in (27.11.2) is O ( x θ ) for all θ > θ 0 . …