About the Project

.2019%E4%BD%93%E6%93%8D%E4%B8%96%E7%95%8C%E6%9D%AF%E3%80%8Ewn4.com%E3%80%8F%E4%BC%AA%E7%90%83%E8%BF%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E6%AE%B5%E5%AD%90.w6n2c9o.2022%E5%B9%B411%E6%9C%8830%E6%97%A511%E6%97%B644%E5%88%8622%E7%A7%92.8ekw666qq

AdvancedHelp

(0.026 seconds)

21—30 of 597 matching pages

21: 28.8 Asymptotic Expansions for Large q
Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
22: 19.27 Asymptotic Approximations and Expansions
§19.27(ii) R F ( x , y , z )
§19.27(iv) R D ( x , y , z )
19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.8 R D ( x , y , z ) = 3 x y z 6 x y R G ( x , y , 0 ) ( 1 + O ( z g ) ) , z / g 0 .
19.27.10 R D ( x , y , z ) = R D ( 0 , y , z ) 3 x h z ( 1 + O ( x h ) ) , x / h 0 .
23: 19.29 Reduction of General Elliptic Integrals
The advantages of symmetric integrals for tables of integrals and symbolic integration are illustrated by (19.29.4) and its cubic case, which replace the 8 + 8 + 12 = 28 formulas in Gradshteyn and Ryzhik (2000, 3.147, 3.131, 3.152) after taking x 2 as the variable of integration in 3. …where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … The first choice gives a formula that includes the 18+9+18 = 45 formulas in Gradshteyn and Ryzhik (2000, 3.133, 3.156, 3.158), and the second choice includes the 8+8+8+12 = 36 formulas in Gradshteyn and Ryzhik (2000, 3.151, 3.149, 3.137, 3.157) (after setting x 2 = t in some cases). … where …(The variables of R F are real and nonnegative unless both Q ’s have real zeros and those of Q 1 interlace those of Q 2 .) …
24: 12.3 Graphics
See accompanying text
Figure 12.3.1: U ( a , x ) , a = 0. …5, 5, 8. Magnify
See accompanying text
Figure 12.3.2: V ( a , x ) , a = 0. …5, 5, 8. Magnify
See accompanying text
Figure 12.3.5: U ( 8 , x ) , U ¯ ( 8 , x ) , F ( 8 , x ) , 4 2 x 4 2 . Magnify
See accompanying text
Figure 12.3.6: U ( 8 , x ) , U ¯ ( 8 , x ) , G ( 8 , x ) , 4 2 x 4 2 . Magnify
25: 17.16 Mathematical Applications
More recent applications are given in Gasper and Rahman (2004, Chapter 8) and Fine (1988, Chapters 1 and 2).
26: 19.34 Mutual Inductance of Coaxial Circles
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
19.34.6 c 2 2 π M = ( r + 2 + r 2 ) R F ( 0 , r + 2 , r 2 ) 4 R G ( 0 , r + 2 , r 2 ) .
References for other inductance problems solvable in terms of elliptic integrals are given in Grover (1946, pp. 8 and 283).
27: 12.1 Special Notation
An older notation, due to Whittaker (1902), for U ( a , z ) is D ν ( z ) . The notations are related by U ( a , z ) = D a 1 2 ( z ) . Whittaker’s notation D ν ( z ) is useful when ν is a nonnegative integer (Hermite polynomial case).
28: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
29: 10.62 Graphs
See accompanying text
Figure 10.62.1: ber x , bei x , ber x , bei x , 0 x 8 . Magnify
See accompanying text
Figure 10.62.2: ker x , kei x , ker x , kei x , 0 x 8 . Magnify
See accompanying text
Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
See accompanying text
Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
30: 19.2 Definitions
D ( m π ± ϕ , k ) = 2 m D ( k ) ± D ( ϕ , k ) .
§19.2(iv) A Related Function: R C ( x , y )
Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …