About the Project

.足球彩票世界杯玩法__『welcom_』_世界杯用球_w6n2c9o_2022年11月30日22时40分37秒_ttnjbxtnd.com

AdvancedHelp

(0.008 seconds)

21—30 of 783 matching pages

21: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • D. Goss (1978) Von Staudt for 𝐅 q [ T ] . Duke Math. J. 45 (4), pp. 885–910.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 22: Bibliography B
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • E. Barouch, B. M. McCoy, and T. T. Wu (1973) Zero-field susceptibility of the two-dimensional Ising model near T c . Phys. Rev. Lett. 31, pp. 1409–1411.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • R. L. Bishop (1981) Rainbow over Woolsthorpe Manor. Notes and Records Roy. Soc. London 36 (1), pp. 3–11 (1 plate).
  • W. Bühring (1987b) The behavior at unit argument of the hypergeometric function F 2 3 . SIAM J. Math. Anal. 18 (5), pp. 1227–1234.
  • 23: Bibliography F
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • 24: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Harvard University (1945) tabulates the real and imaginary parts of h 1 ( z ) , h 1 ( z ) , h 2 ( z ) , h 2 ( z ) for x 0 z x 0 , 0 z y 0 , | x 0 + i y 0 | < 6.1 , with interval 0.1 in z and z . Precision is 8D. Here h 1 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) , h 2 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) .

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • 25: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
    12 H n ( x ) 1 2 x 0 2 n
    14 𝐻𝑒 n ( x ) 1 x 0 n
    Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
    26: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 27: 21.1 Special Notation
    g , h positive integers.
    a j j th element of vector 𝐚 .
    diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
    𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
    S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    28: Bibliography L
  • L. J. Landau (1999) Ratios of Bessel functions and roots of α J ν ( x ) + x J ν ( x ) = 0 . J. Math. Anal. Appl. 240 (1), pp. 174–204.
  • J. LeCaine (1945) A table of integrals involving the functions E n ( x ) .
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • M. Lerch (1887) Note sur la fonction 𝔎 ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • 29: Bibliography S
  • S. Sandström and C. Ackrén (2007) Note on the complex zeros of H ν ( x ) + i ζ H ν ( x ) = 0 . J. Comput. Appl. Math. 201 (1), pp. 3–7.
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • R. S. Scorer (1950) Numerical evaluation of integrals of the form I = x 1 x 2 f ( x ) e i ϕ ( x ) 𝑑 x and the tabulation of the function Gi ( z ) = ( 1 / π ) 0 sin ( u z + 1 3 u 3 ) 𝑑 u . Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • C. E. Synolakis (1988) On the roots of f ( z ) = J 0 ( z ) i J 1 ( z ) . Quart. Appl. Math. 46 (1), pp. 105–107.
  • 30: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    ( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. … These are given by the following equations in which a 1 , a 2 , , a n are nonnegative integers such that … M 1 is the multinominal coefficient (26.4.2): …For each n all possible values of a 1 , a 2 , , a n are covered. … where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …