About the Project

.今年世界杯对阵__『wn4.com_』_巴西世界杯梅西金球奖_w6n2c9o_2022年11月30日8时7分_lvhhtouai.com

AdvancedHelp

(0.009 seconds)

11—20 of 783 matching pages

11: 1.12 Continued Fractions
A n and B n are called the n th (canonical) numerator and denominator respectively. … b 0 + a 1 b 1 + a 2 b 2 + is equivalent to b 0 + a 1 b 1 + a 2 b 2 + if there is a sequence { d n } n = 0 , d 0 = 1 ,
d n 0 , such that … Define … The continued fraction a 1 b 1 + a 2 b 2 + converges when … Then the convergents C n satisfy …
12: 34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by …
34.2.4 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 j 2 m 3 Δ ( j 1 j 2 j 3 ) ( ( j 1 + m 1 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ( j 3 m 3 ) ! ) 1 2 s ( 1 ) s s ! ( j 1 + j 2 j 3 s ) ! ( j 1 m 1 s ) ! ( j 2 + m 2 s ) ! ( j 3 j 2 + m 1 + s ) ! ( j 3 j 1 m 2 + s ) ! ,
where F 2 3 is defined as in §16.2. For alternative expressions for the 3 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 2 3 of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).
13: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
14: 35.8 Generalized Hypergeometric Functions of Matrix Argument
The generalized hypergeometric function F q p with matrix argument 𝐓 𝓢 , numerator parameters a 1 , , a p , and denominator parameters b 1 , , b q is …
§35.8(iii) F 2 3 Case
Let c = b 1 + b 2 a 1 a 2 a 3 . … Let a 1 + a 2 + a 3 + 1 2 ( m + 1 ) = b 1 + b 2 ; one of the a j be a negative integer; ( b 1 a 1 ) , ( b 1 a 2 ) , ( b 1 a 3 ) , ( b 1 a 1 a 2 a 3 ) > 1 2 ( m 1 ) . … Again, let c = b 1 + b 2 a 1 a 2 a 3 . …
15: 16.1 Special Notation
p , q nonnegative integers.
a 1 , a 2 , , a p b 1 , b 2 , , b q } real or complex parameters.
𝐚 vector ( a 1 , a 2 , , a p ) .
𝐛 vector ( b 1 , b 2 , , b q ) .
The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
16: 16.18 Special Cases
The F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. …
16.18.1 F q p ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G p , q + 1 1 , p ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G q + 1 , p p , 1 ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
17: 5.10 Continued Fractions
where
a 0 = 1 12 ,
a 1 = 1 30 ,
a 2 = 53 210 ,
For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …
18: 16.3 Derivatives and Contiguous Functions
Two generalized hypergeometric functions F q p ( 𝐚 ; 𝐛 ; z ) are (generalized) contiguous if they have the same pair of values of p and q , and corresponding parameters differ by integers. …
16.3.7 F 2 3 ( a 1 + 2 , a 2 , a 3 b 1 , b 2 ; z ) a 1 ( a 1 + 1 ) ( 1 z ) + F 2 3 ( a 1 + 1 , a 2 , a 3 b 1 , b 2 ; z ) a 1 ( b 1 + b 2 3 a 1 2 + z ( 2 a 1 a 2 a 3 + 1 ) ) + F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; z ) ( ( 2 a 1 b 1 ) ( 2 a 1 b 2 ) + a 1 a 1 2 z ( a 1 a 2 ) ( a 1 a 3 ) ) F 2 3 ( a 1 1 , a 2 , a 3 b 1 , b 2 ; z ) ( a 1 b 1 ) ( a 1 b 2 ) = 0 .
19: 34.8 Approximations for Large Parameters
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ( 4 π ( 2 j 1 + 1 ) ( 2 j 2 + 1 ) ( 2 l 3 + 1 ) sin θ ) 1 2 ( cos ( ( l 3 + 1 2 ) θ 1 4 π ) + o ( 1 ) ) , j 1 , j 2 , j 3 l 3 1 ,
34.8.2 cos θ = j 1 ( j 1 + 1 ) + j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) 2 j 1 ( j 1 + 1 ) j 2 ( j 2 + 1 ) ,
20: 17.4 Basic Hypergeometric Functions
§17.4(i) ϕ s r Functions
Here and elsewhere it is assumed that the b j do not take any of the values q n . …
§17.4(ii) ψ s r Functions
Here and elsewhere the b j must not take any of the values q n , and the a j must not take any of the values q n + 1 . … For the function H r r see §16.4(v). …