About the Project

.%E7%BD%91%E7%BB%9C%E7%9B%B4%E6%92%AD%E4%B8%96%E7%95%8C%E6%9D%AFapp%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.2022%E4%B8%8B%E5%B1%8A%E4%B8%96%E7%95%8C%E6%9D%AF%E5%9C%A8%E5%93%AA%E4%B8%AA%E5%9B%BD%E5%AE%B6-m6q3s2-2022%E5%B9%B411%E6%9C%8829%E6%97%A56%E6%97%B623%E5%88%8616%E7%A7%92wmcsgwckm.com

AdvancedHelp

(0.048 seconds)

11—20 of 751 matching pages

11: 25.16 Mathematical Applications
β–Ί
25.16.2 ψ ⁑ ( x ) = x ΢ ⁑ ( 0 ) ΢ ⁑ ( 0 ) ρ x ρ ρ + o ⁑ ( 1 ) , x ,
β–Ί
25.16.4 ψ ⁑ ( x ) = x + O ⁑ ( x 1 2 + ϡ ) , x ,
β–Ίwhere H n is given by (25.11.33). … β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . … β–Ί
25.16.12 H ⁑ ( s , z ) + H ⁑ ( z , s ) = ΢ ⁑ ( s ) ⁒ ΢ ⁑ ( z ) + ΢ ⁑ ( s + z ) ,
12: 27.2 Functions
β–Ί
27.2.9 d ⁑ ( n ) = d | n 1
β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
Table 27.2.2: Functions related to division.
β–Ί β–Ίβ–Ίβ–Ί
n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
β–Ί
13: 3.9 Acceleration of Convergence
β–Ί
3.9.5 ln ⁑ 2 = 1 1 2 + 1 3 1 4 + β‹― = 1 1 2 1 + 1 2 2 2 + 1 3 2 3 + β‹― ,
β–Ί
3.9.6 Ο€ 4 = 1 1 3 + 1 5 1 7 + β‹― = 1 2 ⁒ ( 1 + 1 ! 1 3 + 2 ! 3 5 + 3 ! 3 5 7 + β‹― ) .
β–ΊFor further information on the epsilon algorithm see Brezinski and Redivo Zaglia (1991, pp. 78–95). … β–Ί
Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 ⁒ j 2 .
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
8 0.82243 73137 33 0.82246 67719 32 0.82246 70301 49 0.82246 70333 73 0.82246 70334 23
9 0.82248 70624 89 0.82246 71865 91 0.82246 70351 34 0.82246 70334 48 0.82246 70334 24
β–Ί
14: Bibliography P
β–Ί
  • M. PetkovΕ‘ek, H. S. Wilf, and D. Zeilberger (1996) A = B . A K Peters Ltd., Wellesley, MA.
  • β–Ί
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • β–Ί
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • β–Ί
  • K. Prachar (1957) Primzahlverteilung. Die Grundlehren der mathematischen Wissenschaften, Vol. 91, Springer-Verlag, Berlin-Göttingen-Heidelberg (German).
  • β–Ί
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 9296.
  • 15: Bibliography W
    β–Ί
  • E. Wagner (1990) Asymptotische Entwicklungen der Gaußschen hypergeometrischen Funktion für unbeschränkte Parameter. Z. Anal. Anwendungen 9 (4), pp. 351–360 (German).
  • β–Ί
  • Z. Wang and R. Wong (2002) Uniform asymptotic expansion of J Ξ½ ⁒ ( Ξ½ ⁒ a ) via a difference equation. Numer. Math. 91 (1), pp. 147–193.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 16: Bibliography V
    β–Ί
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • β–Ί
  • A. L. Van Buren and J. E. Boisvert (2002) Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives. Quart. Appl. Math. 60 (3), pp. 589–599.
  • β–Ί
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • β–Ί
  • L. Vietoris (1983) Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 83–91 (German).
  • β–Ί
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1995) RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions. Comput. Phys. Comm. 92 (2-3), pp. 252–266.
  • 17: 23.10 Addition Theorems and Other Identities
    β–Ί(23.10.8) continues to hold when e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are permuted cyclically. … β–ΊFor n = 2 , 3 , , …where … β–Ί
    23.10.17 ⁑ ( c ⁒ z | c ⁒ 𝕃 ) = c 2 ⁒ ⁑ ( z | 𝕃 ) ,
    β–ΊAlso, when 𝕃 is replaced by c ⁒ 𝕃 the lattice invariants g 2 ⁑ and g 3 ⁑ are divided by c 4 and c 6 , respectively. …
    18: 23.14 Integrals
    β–Ί β–Ί
    23.14.2 2 ⁑ ( z ) ⁒ d z = 1 6 ⁒ ⁑ ( z ) + 1 12 ⁒ g 2 ⁑ ⁒ z ,
    β–Ί
    19: 23.2 Definitions and Periodic Properties
    β–ΊThe generators of a given lattice 𝕃 are not unique. …where a , b , c , d are integers, then 2 ⁒ Ο‡ 1 , 2 ⁒ Ο‡ 3 are generators of 𝕃 iff … β–ΊWhen z 𝕃 the functions are related by … β–ΊWhen it is important to display the lattice with the functions they are denoted by ⁑ ( z | 𝕃 ) , ΞΆ ⁑ ( z | 𝕃 ) , and Οƒ ⁑ ( z | 𝕃 ) , respectively. … β–ΊIf 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 is any pair of generators of 𝕃 , and Ο‰ 2 is defined by (23.2.1), then …
    20: Bibliography F
    β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • β–Ί
  • C. H. Franke (1965) Numerical evaluation of the elliptic integral of the third kind. Math. Comp. 19 (91), pp. 494–496.
  • β–Ί
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • β–Ί
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.