About the Project

.%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA%E3%80%8Ewn4.com%E3%80%8F%E6%BE%B3%E9%97%A8%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%BA%BF%E4%B8%8A%E8%B5%8C%E5%9C%BA.%E7%9C%9F%E7%9A%84%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E5%A8%B1%E4%B9%90.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%9C%9F%E4%BA%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E6%A3%8B%E7%89%8C-w6n2c9o.2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B651%E5%88%8618%E7%A7%92.q000s0soc.com

AdvancedHelp

Did you mean .%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA%E3%80%8Ewn4.com%E3%80%8F%E6%BE%B3%E9%97%A8%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%BA%BF%E4%B8%8A%E8%B5%8C%E5%9C%BA.%E7%9C%9F%E7%9A%84%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E5%A8%B1%E4%B9%90.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%9C%9F%E4%BA%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E6%A3%8B%E7%89%8C-2022-06-22%E5%B9%411%E6%9C%882%E6%97%254%E6%97%651%E5%88%861%E7%A7%20000 ?

(0.068 seconds)

1—10 of 715 matching pages

1: 26.9 Integer Partitions: Restricted Number and Part Size
Table 26.9.1: Partitions p k ( n ) .
n k
0 1 2 3 4 5 6 7 8 9 10
7 0 1 4 8 11 13 14 15 15 15 15
8 0 1 5 10 15 18 20 21 22 22 22
Equations (26.9.2)–(26.9.3) are examples of closed forms that can be computed explicitly for any positive integer k . See Andrews (1976, p. 81). …
2: 22.17 Moduli Outside the Interval [0,1]
In (22.17.5) either value of the square root can be chosen. …
3: 26.6 Other Lattice Path Numbers
Table 26.6.1: Delannoy numbers D ( m , n ) .
m n
0 1 2 3 4 5 6 7 8 9 10
Table 26.6.2: Motzkin numbers M ( n ) .
n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
0 1 4 9 8 323 12 15511 16 8 53467
26.6.12 C ( n ) = k = 1 n N ( n , k ) ,
26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
26.6.14 C ( n ) = k = 0 2 n ( 1 ) k ( 2 n k ) M ( 2 n k ) .
4: 4.5 Inequalities
For more inequalities involving the exponential function see Mitrinović (1964, pp. 73–77), Mitrinović (1970, pp. 266–271), and Bullen (1998, pp. 81–83).
5: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 6: Bibliography L
  • A. Laforgia (1986) Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1), pp. 75–81.
  • C. G. Lambe and D. R. Ward (1934) Some differential equations and associated integral equations. Quart. J. Math. (Oxford) 5, pp. 8197.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • D. W. Lozier and F. W. J. Olver (1994) Numerical Evaluation of Special Functions. In Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993), Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
  • Y. L. Luke (1972) Miniaturized tables of Bessel functions. III. Math. Comp. 26 (117), pp. 237–240 and A14–B5.
  • 7: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 8: Bibliography Z
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • J. Zhang (1996) A note on the τ -method approximations for the Bessel functions Y 0 ( z ) and Y 1 ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • 9: Bibliography H
  • P. I. Hadži (1968) Computation of certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven 1968 (2), pp. 81–104. (errata insert) (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • 10: Tom H. Koornwinder
    Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …