About the Project

👉1(716)351-621📞Delta Flights 🪐stirlingses 🛸flight cancellation

AdvancedHelp

The term"bigdelta" was not found.Possible alternative term: "bigeta".

(0.002 seconds)

1—10 of 823 matching pages

1: Bibliography J
  • L. Jager (1997) Fonctions de Mathieu et polynômes de Klein-Gordon. C. R. Acad. Sci. Paris Sér. I Math. 325 (7), pp. 713–716 (French).
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • A. Jonquière (1889) Note sur la série n = 1 x n / n s . Bull. Soc. Math. France 17, pp. 142–152 (French).
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 2: Bibliography D
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a) On the zeros of generalized Bessel polynomials. I. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 1–13.
  • P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Morgan, and D. R. Morrison (Eds.) (1999) Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2. American Mathematical Society, Providence, RI.
  • R. B. Dingle (1957a) The Bose-Einstein integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 240–244.
  • R. B. Dingle (1957b) The Fermi-Dirac integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η + 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 225–239.
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • 3: 26.8 Set Partitions: Stirling Numbers
    s ( n , k ) denotes the Stirling number of the first kind: ( 1 ) n k times the number of permutations of { 1 , 2 , , n } with exactly k cycles. … where ( x ) n is the Pochhammer symbol: x ( x + 1 ) ( x + n 1 ) . … For n 1 , … uniformly for n = o ( k 1 / 2 ) . For asymptotic approximations for s ( n + 1 , k + 1 ) and S ( n , k ) that apply uniformly for 1 k n as n see Temme (1993) and Temme (2015, Chapter 34). …
    4: 26.13 Permutations: Cycle Notation
    𝔖 n denotes the set of permutations of { 1 , 2 , , n } . … is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … A permutation that consists of a single cycle of length k can be written as the composition of k 1 two-cycles (read from right to left): … If j < k , then ( j , k ) is a product of 2 k 2 j 1 adjacent transpositions: …
    5: 26.1 Special Notation
    ( m n ) binomial coefficient.
    ( m n 1 , n 2 , , n k ) multinomial coefficient.
    s ( n , k ) Stirling numbers of the first kind.
    x n ¯ = x ( x + 1 ) ( x + 2 ) ( x + n 1 ) ,
    x n ¯ = x ( x 1 ) ( x 2 ) ( x n + 1 ) .
    Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). …
    6: 3.4 Differentiation
    The Lagrange ( n + 1 ) -point formula is … where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … With the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points θ = 0 , 2 π , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . …
    3.4.34 4 u 0 , 0 = 1 6 h 4 ( 184 u 0 , 0 ( u 0 , 3 + u 0 , 3 + u 3 , 0 + u 3 , 0 ) + 14 ( u 0 , 2 + u 0 , 2 + u 2 , 0 + u 2 , 0 ) 77 ( u 0 , 1 + u 0 , 1 + u 1 , 0 + u 1 , 0 ) + 20 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) ( u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 ) ) + O ( h 4 ) .
    7: DLMF Project News
    error generating summary
    8: 24.15 Related Sequences of Numbers
    24.15.4 T 2 n 1 = ( 1 ) n 1 2 2 n ( 2 2 n 1 ) 2 n B 2 n , n = 1 , 2 , ,
    The Stirling numbers of the first kind s ( n , m ) , and the second kind S ( n , m ) , are as defined in §26.8(i). …
    24.15.8 k = 0 n ( 1 ) n + k s ( n + 1 , k + 1 ) B k = n ! n + 1 .
    The Fibonacci numbers are defined by u 0 = 0 , u 1 = 1 , and u n + 1 = u n + u n 1 , n 1 . The Lucas numbers are defined by v 0 = 2 , v 1 = 1 , and v n + 1 = v n + v n 1 , n 1 . …
    9: 17.18 Methods of Computation
    The two main methods for computing basic hypergeometric functions are: (1) numerical summation of the defining series given in §§17.4(i) and 17.4(ii); (2) modular transformations. Method (1) is applicable within the circles of convergence of the defining series, although it is often cumbersome owing to slowness of convergence and/or severe cancellation. … Method (1) can sometimes be improved by application of convergence acceleration procedures; see §3.9. …
    10: 4.45 Methods of Computation
    Suppose first 1 / 10 x 10 . …After computing ln ( 1 + y ) from (4.6.1) … For other values of x set x = 10 m ξ , where 1 / 10 ξ 10 and m . … From (4.24.15) with u = v = ( ( 1 + x 2 ) 1 / 2 1 ) / x , we have … For example, arcsin x = arctan ( x ( 1 x 2 ) 1 / 2 ) . …