About the Project

高中毕业证等级h《做证微fuk7778》CZ0F

AdvancedHelp

(0.003 seconds)

21—30 of 291 matching pages

21: 33.17 Recurrence Relations and Derivatives
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
22: 36 Integrals with Coalescing Saddles
… …
23: 28.8 Asymptotic Expansions for Large q
Denote h = q and s = 2 m + 1 . Then as h + with m = 0 , 1 , 2 , , … Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). Then as h + Then as h +
24: 9.6 Relations to Other Functions
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.7 Ai ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) ,
9.6.8 Bi ( z ) = z / 3 ( J 1 / 3 ( ζ ) J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.9 Bi ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) + J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) .
9.6.17 H 1 / 3 ( 1 ) ( ζ ) = e π i / 3 H 1 / 3 ( 1 ) ( ζ ) = e π i / 6 3 / z ( Ai ( z ) i Bi ( z ) ) ,
25: 11.1 Special Notation
For the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , I ν ( z ) , and K ν ( z ) see §§10.2(ii), 10.25(ii). The functions treated in this chapter are the Struve functions 𝐇 ν ( z ) and 𝐊 ν ( z ) , the modified Struve functions 𝐋 ν ( z ) and 𝐌 ν ( z ) , the Lommel functions s μ , ν ( z ) and S μ , ν ( z ) , the Anger function 𝐉 ν ( z ) , the Weber function 𝐄 ν ( z ) , and the associated Anger–Weber function 𝐀 ν ( z ) .
26: 23.16 Graphics
See Figures 23.16.123.16.3 for the modular functions λ , J , and η . …
See accompanying text
Figure 23.16.1: Modular functions λ ( i y ) , J ( i y ) , η ( i y ) for 0 y 3 . … Magnify
See accompanying text
Figure 23.16.3: Dedekind’s eta function η ( x + i y ) for 0.0625 x 0.0625 , 0.0001 y 0.07 . Magnify 3D Help
27: 10.7 Limiting Forms
For H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) when ν > 0 combine (10.4.6) and (10.7.7). For H i ν ( 1 ) ( z ) and H i ν ( 2 ) ( z ) when ν and ν 0 combine (10.4.3), (10.7.3), and (10.7.6). … For the corresponding results for H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) see (10.2.5) and (10.2.6).
28: 10.16 Relations to Other Functions
H 1 2 ( 1 ) ( z ) = i H 1 2 ( 1 ) ( z ) = i ( 2 π z ) 1 2 e i z ,
H 1 2 ( 2 ) ( z ) = i H 1 2 ( 2 ) ( z ) = i ( 2 π z ) 1 2 e i z .
10.16.6 H ν ( 1 ) ( z ) H ν ( 2 ) ( z ) } = 2 π 1 2 i e ν π i ( 2 z ) ν e ± i z U ( ν + 1 2 , 2 ν + 1 , 2 i z ) .
29: 25.16 Mathematical Applications
Euler sums have the form …where H n is given by (25.11.33). … For integer s ( 2 ), H ( s ) can be evaluated in terms of the zeta function: … H ( s ) is the special case H ( s , 1 ) of the function …when both H ( s , z ) and H ( z , s ) are finite. …
30: 33.15 Graphics
§33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
See accompanying text
Figure 33.15.1: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 0 , ϵ = 4 . Magnify
See accompanying text
Figure 33.15.2: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 1 , ϵ = 4 . Magnify
§33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
See accompanying text
Figure 33.15.7: h ( ϵ , ; r ) with = 0 , 2 < ϵ < 2 , 15 < r < 15 . Magnify 3D Help