About the Project

金肯职业技术学院毕业证制作【言正 微aptao168】0oB4ifw

AdvancedHelp

(0.004 seconds)

21—30 of 697 matching pages

21: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
Let α = n , n = 0 , 1 , 2 , , and q n , m , m = 0 , 1 , , n , be the eigenvalues of the tridiagonal matrix
31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . …
22: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Zhang and Jin (1996, p. 270) tabulates 0 x J 0 ( t ) d t , 0 x t 1 ( 1 J 0 ( t ) ) d t , 0 x Y 0 ( t ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • Achenbach (1986) tabulates I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , x = 0 ( .1 ) 8 , 19D or 19–21S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • 23: 8.26 Tables
  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • 24: 22.5 Special Values
    For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . …
    §22.5(ii) Limiting Values of k
    If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. …
    25: 21.4 Graphics
    This Riemann matrix originates from the Riemann surface represented by the algebraic curve μ 3 λ 7 + 2 λ 3 μ = 0 ; compare §21.7(i).
    Figure 21.4.1: θ ^ ( 𝐳 | 𝛀 ) parametrized by (21.4.1). The surface plots are of θ ^ ( x + i y , 0 | 𝛀 ) , 0 x 1 , 0 y 5 (suffix 1); θ ^ ( x , y | 𝛀 ) , 0 x 1 , 0 y 1 (suffix 2); θ ^ ( i x , i y | 𝛀 ) , 0 x 5 , 0 y 5 (suffix 3). …
    See accompanying text
    Figure 21.4.2: θ ^ ( x + i y , 0 | 𝛀 1 ) , 0 x 1 , 0 y 5 . … Magnify 3D Help
    See accompanying text
    Figure 21.4.3: | θ ^ ( x + i y , 0 | 𝛀 1 ) | , 0 x 1 , 0 y 2 . Magnify 3D Help
    See accompanying text
    Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: θ ^ ( x + i y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . … Magnify 3D Help
    26: 10.48 Graphs
    See accompanying text
    Figure 10.48.1: 𝗃 n ( x ) , n = 0 ( 1 ) 4 , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.2: 𝗒 n ( x ) , n = 0 ( 1 ) 4 , 0 < x 12 . Magnify
    See accompanying text
    Figure 10.48.3: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.4: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify
    27: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
    §17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
    17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
    28: 36.15 Methods of Computation
    Close to the origin 𝐱 = 𝟎 of parameter space, the series in §36.8 can be used. … Close to the bifurcation set but far from 𝐱 = 𝟎 , the uniform asymptotic approximations of §36.12 can be used. …
    29: 19.22 Quadratic Transformations
    The AGM, M ( a 0 , g 0 ) , of two positive numbers a 0 and g 0 is defined in §19.8(i). … Q n has the same sign as a 0 g 0 for n 1 . …where p 0 > 0 and …As n , p n and ε n converge quadratically to M ( a 0 , g 0 ) and 0, respectively, and Q n converges to 0 faster than quadratically. … If p = x or p = y , then (19.22.20) reduces to 0 = 0 by (19.20.13), and if z = x or z = y then (19.22.19) reduces to 0 = 0 by (19.20.20) and (19.22.22). …
    30: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ( x ) , x = 1 ( .1 ) 3 ( .5 ) 8 , 4D; also G ( x ) + ln x , x = 0 ( .05 ) 1 , 4D.

  • Finn and Mugglestone (1965) includes the Voigt function H ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Abramowitz and Stegun (1964, Chapter 7) includes w ( z ) , x = 0 ( .1 ) 3.9 , y = 0 ( .1 ) 3 , 6D.