About the Project

金肯职业技术学院毕业证制作【言正 微aptao168】0oB4ifw

AdvancedHelp

(0.005 seconds)

11—20 of 697 matching pages

11: 28.3 Graphics
See accompanying text
Figure 28.3.1: ce 2 n ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.2: ce 2 n ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.3: ce 2 n + 1 ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.4: ce 2 n + 1 ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.9: ce 0 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help
12: 32.7 Bäcklund Transformations
If γ = 0 and α δ 0 , then set α = 1 and δ = 1 , without loss of generality. …Similar results hold for P III  with δ = 0 and β γ 0 . … Let W 0 = W ( z ; α 0 , β 0 , γ 0 , 1 2 ) and W 1 = W ( z ; α 1 , β 1 , γ 1 , 1 2 ) be solutions of P V , where …and assume Φ 0 . … for j = 0 , 1 , 2 , , where …
13: 19.37 Tables
Tabulated for k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964), and for k = 0 ( .02 ) 1 to 7D by Zhang and Jin (1996, p. 673). … Tabulated for k 2 = 0 ( .001 ) 1 to 8D by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). …
14: 12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Miller (1955) includes W ( a , x ) , W ( a , x ) , and reduced derivatives for a = 10 ( 1 ) 10 , x = 0 ( .1 ) 10 , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.

  • Kireyeva and Karpov (1961) includes D p ( x ( 1 + i ) ) for ± x = 0 ( .1 ) 5 , p = 0 ( .1 ) 2 , and ± x = 5 ( .01 ) 10 , p = 0 ( .5 ) 2 , 7D.

  • Karpov and Čistova (1964) includes D p ( x ) for p = 2 ( .1 ) 0 , ± x = 0 ( .01 ) 5 ; p = 2 ( .05 ) 0 , ± x = 5 ( .01 ) 10 , 6D.

  • Karpov and Čistova (1968) includes e 1 4 x 2 D p ( x ) and e 1 4 x 2 D p ( i x ) for x = 0 ( .01 ) 5 and x 1 = 0(.001 or .0001)5, p = 1 ( .1 ) 1 , 7D or 8S.

  • 15: 3.4 Differentiation
    where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … For corresponding formulas for second, third, and fourth derivatives, with t = 0 , see Collatz (1960, Table III, pp. 538–539). … f ( z ) = e z , x 0 = 0 . … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
    16: 14.4 Graphics
    See accompanying text
    Figure 14.4.1: 𝖯 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.2: 𝖰 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.7: 𝖯 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.8: 𝖰 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.24: 𝑸 0 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
    17: 20.15 Tables
    This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
    20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
    Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
    18: 10.72 Mathematical Applications
    These expansions are uniform with respect to z , including the turning point z 0 and its neighborhood, and the region of validity often includes cut neighborhoods (§1.10(vi)) of other singularities of the differential equation, especially irregular singularities. … The number m can also be replaced by any real constant λ ( > 2 ) in the sense that ( z z 0 ) λ f ( z ) is analytic and nonvanishing at z 0 ; moreover, g ( z ) is permitted to have a single or double pole at z 0 . … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . … In (10.72.1) assume f ( z ) = f ( z , α ) and g ( z ) = g ( z , α ) depend continuously on a real parameter α , f ( z , α ) has a simple zero z = z 0 ( α ) and a double pole z = 0 , except for a critical value α = a , where z 0 ( a ) = 0 . …These approximations are uniform with respect to both z and α , including z = z 0 ( a ) , the cut neighborhood of z = 0 , and α = a . …
    19: 28.21 Graphics
    See accompanying text
    Figure 28.21.1: Mc 0 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
    See accompanying text
    Figure 28.21.2: Mc 1 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
    See accompanying text
    Figure 28.21.3: Mc 0 ( 2 ) ( x , h ) for 0.1 h 2 , 0 x 2 . Magnify 3D Help
    See accompanying text
    Figure 28.21.4: Mc 1 ( 2 ) ( x , h ) for 0.2 h 2 , 0 x 2 . Magnify 3D Help
    See accompanying text
    Figure 28.21.5: Ms 1 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
    20: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.