About the Project

怎么做假雅芳-斯特拉特福学院文凭毕业证【购证 微kaa77788】5Tpe

AdvancedHelp

(0.003 seconds)

21—30 of 286 matching pages

21: 15.3 Graphics
See accompanying text
Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
See accompanying text
Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
See accompanying text
Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
See accompanying text
Figure 15.3.6: F ( 3 , 3 5 ; u + i v ; 1 2 ) , 6 u 2 , 2 v 2 . … Magnify 3D Help
22: 26.13 Permutations: Cycle Notation
26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
23: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 24: 35.11 Tables
    Tables of zonal polynomials are given in James (1964) for | κ | 6 , Parkhurst and James (1974) for | κ | 12 , and Muirhead (1982, p. 238) for | κ | 5 . …
    25: 26.21 Tables
    Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. …
    26: 27.20 Methods of Computation: Other Number-Theoretic Functions
    See Calkin et al. (2007), and Lehmer (1941, pp. 5–83). …
    27: 12.4 Power-Series Expansions
    12.4.3 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a + 1 2 ) z 2 2 ! + ( a + 1 2 ) ( a + 5 2 ) z 4 4 ! + ) ,
    12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
    12.4.5 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a 1 2 ) z 2 2 ! + ( a 1 2 ) ( a 5 2 ) z 4 4 ! + ) ,
    12.4.6 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a 3 2 ) z 3 3 ! + ( a 3 2 ) ( a 7 2 ) z 5 5 ! + ) .
    28: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.3: Chebyshev polynomials T n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    29: 10.26 Graphics
    See accompanying text
    Figure 10.26.3: I ν ( x ) , 0 x 5 , 0 ν 4 . Magnify 3D Help
    See accompanying text
    Figure 10.26.4: K ν ( x ) , 0.1 x 5 , 0 ν 4 . Magnify 3D Help
    See accompanying text
    Figure 10.26.5: I ν ( x ) , 0 x 5 , 0 ν 4 . Magnify 3D Help
    See accompanying text
    Figure 10.26.6: K ν ( x ) , 0.3 x 5 , 0 ν 4 . Magnify 3D Help
    See accompanying text
    Figure 10.26.9: I ~ 5 ( x ) , K ~ 5 ( x ) , 0.01 x 3 . Magnify
    30: 24.2 Definitions and Generating Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    4 1 30 5
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    10 5 66 7.57575 7576 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    4 5
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    5 0 1 6 0 5 3 5 2 1
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    5 1 2 0 5 2 0 5 2 1