About the Project

密尔塞普斯学院学历认证办理【仿证 微kaa77788】】dot

AdvancedHelp

The terms "学院学", "kaa77788" were not found.Possible alternative term: "27789".

(0.002 seconds)

1—10 of 191 matching pages

1: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
2: 4.33 Maclaurin Series and Laurent Series
4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
3: 26.16 Multiset Permutations
𝔖 S denotes the set of permutations of S for all distinct orderings of the a 1 + a 2 + + a n integers. The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The q -multinomial coefficient is defined in terms of Gaussian polynomials (§26.9(ii)) by
26.16.1 [ a 1 + a 2 + + a n a 1 , a 2 , , a n ] q = k = 1 n 1 [ a k + a k + 1 + + a n a k ] q ,
4: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. …
26.4.2 ( n 1 + n 2 + + n k n 1 , n 2 , , n k ) = ( n 1 + n 2 + + n k ) ! n 1 ! n 2 ! n k ! = j = 1 k 1 ( n j + n j + 1 + + n k n j ) .
26.4.3 n = a 1 + 2 a 2 + + n a n ,
26.4.9 ( x 1 + x 2 + + x k ) n = ( n n 1 , n 2 , , n k ) x 1 n 1 x 2 n 2 x k n k ,
where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …
5: 4.39 Continued Fractions
4.39.1 tanh z = z 1 + z 2 3 + z 2 5 + z 2 7 + , z ± 1 2 π i , ± 3 2 π i , .
4.39.2 arcsinh z 1 + z 2 = z 1 + 1 2 z 2 3 + 1 2 z 2 5 + 3 4 z 2 7 + 3 4 z 2 9 + ,
4.39.3 arctanh z = z 1 z 2 3 4 z 2 5 9 z 2 7 ,
6: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
7: 4.9 Continued Fractions
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
e z = 1 1 z 1 + z 2 z 3 + z 2 z 5 + z 2
= 1 + z 1 z 2 + z 3 z 2 + z 5 z 2 + z 7
= 1 + z 1 ( z / 2 ) + z 2 / ( 4 3 ) 1 + z 2 / ( 4 15 ) 1 + z 2 / ( 4 35 ) 1 + z 2 / ( 4 ( 4 n 2 1 ) ) 1 +
4.9.4 e z e n 1 ( z ) = z n n ! n ! z ( n + 1 ) + z ( n + 2 ) ( n + 1 ) z ( n + 3 ) + 2 z ( n + 4 ) ( n + 2 ) z ( n + 5 ) + 3 z ( n + 6 ) ,
8: 3.2 Linear Algebra
3.2.2 [ a 11 a 1 n b 1 a n 1 a n n b n ] .
3.2.3 [ u 11 u 12 u 1 n y 1 0 u 22 u 2 n y 2 0 0 u n n y n ] .
3.2.4 𝐋 = [ 1 0 0 21 1 0 n 1 n , n 1 1 ] .
3.2.7 𝐀 = [ b 1 c 1 0 a 2 b 2 c 2 a n 1 b n 1 c n 1 0 a n b n ] .
where p is one of the matrix norms. …
9: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
10: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,