About the Project

亚洲博彩平台,亚洲博彩公司,【亚洲博彩网址∶22kk33.com】体育博彩公司排名,最大的博彩公司,亚洲体育博彩平台【线上博彩∶22kk33.com】网址ZEkEnBDkCBgfk0kC

AdvancedHelp

(0.002 seconds)

21—30 of 71 matching pages

21: 27.2 Functions
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
9 6 3 13 22 10 4 36 35 24 4 48 48 16 10 124
10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
22: Bibliography K
  • E. G. Kalnins and W. Miller (1991a) Hypergeometric expansions of Heun polynomials. SIAM J. Math. Anal. 22 (5), pp. 1450–1459.
  • E. G. Kalnins and W. Miller (1991b) Addendum: “Hypergeometric expansions of Heun polynomials”. SIAM J. Math. Anal. 22 (6), pp. 1803.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • V. B. Kuznetsov (1992) Equivalence of two graphical calculi. J. Phys. A 25 (22), pp. 6005–6026.
  • 23: 24.2 Definitions and Generating Functions
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    22 8 54513 138 6.19212 3188 ×10³
    Table 24.2.4: Euler numbers E n .
    n E n
    22 69 34887 43931 37901
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    12 691 2730 0 5 0 33 2 0 22 0 33 2 0 11 6 1
    24: Bibliography T
  • N. M. Temme (1978) Uniform asymptotic expansions of confluent hypergeometric functions. J. Inst. Math. Appl. 22 (2), pp. 215–223.
  • R. F. Tooper and J. Mark (1968) Simplified calculation of Ei ( x ) for positive arguments, and a short table of Shi ( x ) . Math. Comp. 22 (102), pp. 448–449.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • 25: 9.9 Zeros
    9.9.14 β k = e π i / 3 T ( 3 8 π ( 4 k 1 ) + 3 4 i ln 2 ) ,
    9.9.15 Bi ( β k ) = ( 1 ) k 2 e π i / 6 V ( 3 8 π ( 4 k 1 ) + 3 4 i ln 2 ) ,
    9.9.16 β k = e π i / 3 U ( 3 8 π ( 4 k 3 ) + 3 4 i ln 2 ) ,
    9.9.17 Bi ( β k ) = ( 1 ) k 1 2 e π i / 6 W ( 3 8 π ( 4 k 3 ) + 3 4 i ln 2 ) .
    26: 23.9 Laurent and Other Power Series
    Also, Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the reverted form of (23.9.2) as 1 / ( z ) 0 . …
    27: 25.5 Integral Representations
    25.5.13 ζ ( s ) = π s / 2 s ( s 1 ) Γ ( 1 2 s ) + π s / 2 Γ ( 1 2 s ) 1 ( x s / 2 + x ( 1 s ) / 2 ) ω ( x ) x d x , s 1 ,
    25.5.14 ω ( x ) n = 1 e n 2 π x = 1 2 ( θ 3 ( 0 | i x ) 1 ) .
    25.5.17 ζ ( 1 + s ) = sin ( π s ) π 0 ( γ + ψ ( 1 + x ) ) x s 1 d x ,
    28: 26.3 Lattice Paths: Binomial Coefficients
    29: 26.7 Set Partitions: Bell Numbers
    30: 28.26 Asymptotic Approximations for Large q
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,