About the Project

【杏彩体育qee9.com】3d时时彩开奖器VvBq

AdvancedHelp

(0.003 seconds)

21—30 of 718 matching pages

21: 36.8 Convergent Series Expansions
36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
d 0 ( t ) = 0 ,
c n + 1 ( t ) = c n ( t ) + t d n ( t ) ,
d n + 1 ( t ) = c n ( t ) + d n ( t ) .
22: 9.11 Products
9.11.1 d 3 w d z 3 4 z d w d z 2 w = 0 , w = w 1 w 2 ,
For example, w = Ai 2 ( z ) , Ai ( z ) Bi ( z ) , Ai ( z ) Ai ( z e 2 π i / 3 ) , M 2 ( z ) . …
9.11.10 z w 1 w 2 d z = 3 10 ( w 1 w 2 + z w 1 w 2 + z w 1 w 2 ) + 1 5 ( z 2 w 1 w 2 z 3 w 1 w 2 ) .
For z n w 1 w 2 d z , z n w 1 w 2 d z , z n w 1 w 2 d z , where n is any positive integer, see Albright (1977). … For further definite integrals see Prudnikov et al. (1990, §1.8.2), Laurenzi (1993), Reid (1995, 1997a, 1997b), and Vallée and Soares (2010, Chapters 3, 4).
23: 17.9 Further Transformations of ϕ r r + 1 Functions
§17.9(i) ϕ 1 2 ϕ 2 2 , ϕ 1 3 , or ϕ 2 3
§17.9(ii) ϕ 2 3 ϕ 2 3
Transformations of ϕ 2 3 -Series
Sears’ Balanced ϕ 3 4 Transformations
With d e f = a b c q 1 n
24: 31.2 Differential Equations
where 2 ω 1 and 2 ω 3 with ( ω 3 / ω 1 ) > 0 are generators of the lattice 𝕃 for ( z | 𝕃 ) . … Lastly, w ( z ) = ( z a ) 1 ϵ w 3 ( z ) satisfies (31.2.1) if w 3 is a solution of (31.2.1) with transformed parameters q 3 = q + γ ( 1 ϵ ) ; α 3 = α + 1 ϵ , β 3 = β + 1 ϵ , ϵ 3 = 2 ϵ . By composing these three steps, there result 2 3 = 8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1). … If z ~ = z ~ ( z ) is one of the 3 ! = 6 homographies that map to , then w ( z ) = w ~ ( z ~ ) satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and appropriately transformed parameters. …If z ~ = z ~ ( z ) is one of the 4 ! 3 ! = 18 homographies that do not map to , then an appropriate prefactor must be included on the right-hand side. …
25: 29.2 Differential Equations
Next, let e 1 , e 2 , e 3 be any real constants that satisfy e 1 > e 2 > e 3 and …
( e 2 e 3 ) / ( e 1 e 3 ) = k 2 .
29.2.9 d 2 w d η 2 + ( g ν ( ν + 1 ) ( η ) ) w = 0 ,
29.2.10 d 2 w d ζ 2 + 1 2 ( 1 ζ e 1 + 1 ζ e 2 + 1 ζ e 3 ) d w d ζ + g ν ( ν + 1 ) ζ 4 ( ζ e 1 ) ( ζ e 2 ) ( ζ e 3 ) w = 0 ,
g 3 = 4 e 1 e 2 e 3 .
26: 19.34 Mutual Inductance of Coaxial Circles
19.34.1 c 2 M 2 π = a b 0 2 π ( h 2 + a 2 + b 2 2 a b cos θ ) 1 / 2 cos θ d θ = 2 a b 1 1 t d t ( 1 + t ) ( 1 t ) ( a 3 2 a b t ) = 2 a b I ( 𝐞 5 ) ,
a 3 = h 2 + a 2 + b 2 ,
19.34.3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) I ( 𝐞 3 ) = a 3 I ( 𝟎 ) r + 2 r 2 I ( 𝐞 3 ) = 2 a b ( I ( 𝟎 ) r 2 I ( 𝐞 1 𝐞 3 ) ) ,
Application of (19.29.4) and (19.29.7) with α = 1 , a β + b β t = 1 t , δ = 3 , and a γ + b γ t = 1 yields
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
27: 23.6 Relations to Other Functions
In this subsection 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 , e 2 , e 3 are given by (23.3.9). … Again, in Equations (23.6.16)–(23.6.26), 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 and e 1 , e 2 , e 3 are given by (23.3.9). … Let z be on the perimeter of the rectangle with vertices 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 . … Let z be a point of different from e 1 , e 2 , e 3 , and define w by …where the integral is taken along any path from z to that does not pass through any of e 1 , e 2 , e 3 . …
28: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
5 π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
29: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.1 arcsin z = z + 1 2 z 3 3 + 1 3 2 4 z 5 5 + 1 3 5 2 4 6 z 7 7 + , | z | 1 .
4.24.3 arctan z = z z 3 3 + z 5 5 z 7 7 + , | z | 1 , z ± i .
4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
4.24.7 d d z arcsin z = ( 1 z 2 ) 1 / 2 ,
4.24.8 d d z arccos z = ( 1 z 2 ) 1 / 2 ,
30: 9.19 Approximations
  • Moshier (1989, §6.14) provides minimax rational approximations for calculating Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) . They are in terms of the variable ζ , where ζ = 2 3 x 3 / 2 when x is positive, ζ = 2 3 ( x ) 3 / 2 when x is negative, and ζ = 0 when x = 0 . The approximations apply when 2 ζ < , that is, when 3 2 / 3 x < or < x 3 2 / 3 . The precision in the coefficients is 21S.

  • Németh (1992, Chapter 8) covers Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) , and integrals 0 x Ai ( t ) d t , 0 x Bi ( t ) d t , 0 x 0 v Ai ( t ) d t d v , 0 x 0 v Bi ( t ) d t d v (see also (9.10.20) and (9.10.21)). The Chebyshev coefficients are given to 15D. Chebyshev coefficients are also given for expansions of the second and higher (real) zeros of Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) , again to 15D.