About the Project

重庆时时彩平台源码【亚博官方qee9.com】nba火箭直播360直播视频直播8KPQgjXG

AdvancedHelp

(0.001 seconds)

31—40 of 221 matching pages

31: 28.6 Expansions for Small q
28.6.1 a 0 ( q ) = 1 2 q 2 + 7 128 q 4 29 2304 q 6 + 68687 188 74368 q 8 + ,
28.6.2 a 1 ( q ) = 1 + q 1 8 q 2 1 64 q 3 1 1536 q 4 + 11 36864 q 5 + 49 5 89824 q 6 + 55 94 37184 q 7 83 353 89440 q 8 + ,
28.6.3 b 1 ( q ) = 1 q 1 8 q 2 + 1 64 q 3 1 1536 q 4 11 36864 q 5 + 49 5 89824 q 6 55 94 37184 q 7 83 353 89440 q 8 + ,
28.6.4 a 2 ( q ) = 4 + 5 12 q 2 763 13824 q 4 + 10 02401 796 26240 q 6 16690 68401 45 86471 42400 q 8 + ,
Leading terms of the of the power series for m = 7 , 8 , 9 , are: …
32: 10.67 Asymptotic Expansions for Large Argument
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
10.67.2 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) .
10.67.5 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 1 8 ) π ) ,
10.67.6 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 1 8 ) π ) .
10.67.10 ber x bei x ber x bei x e x 2 2 π x ( 1 2 + 1 8 1 x + 9 64 2 1 x 2 + 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
33: 23.17 Elementary Properties
η ( e π i / 3 ) = 3 1 / 8 ( Γ ( 1 3 ) ) 3 / 2 2 π e π i / 24 .
23.17.4 λ ( τ ) = 16 q ( 1 8 q + 44 q 2 + ) ,
23.17.7 λ ( τ ) = 16 q n = 1 ( 1 + q 2 n 1 + q 2 n 1 ) 8 ,
34: 28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
35: Staff
  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11 (deceased)

  • 36: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    0 1 2 3 4 5 6 7 8 9 10
    8 1 17 145 833 3649 13073 40081 1 08545 2 65729 5 98417 12 56465
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    0 1 4 9 8 323 12 15511 16 8 53467
    Table 26.6.3: Narayana numbers N ( n , k ) .
    n k
    8 0 1 28 196 490 490 196 28 1
    Table 26.6.4: Schröder numbers r ( n ) .
    n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
    0 1 4 90 8 41586 12 272 97738 16 2 09271 56706
    37: 24.2 Definitions and Generating Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    8 1 30 1385
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    8 1 30 3.33333 3333 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    8 1385
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    8 0 17 0 28 0 14 0 4 1
    38: 20.4 Values at z = 0
    20.4.9 θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) = 1 8 n = 1 q 2 n ( 1 + q 2 n ) 2 ,
    20.4.10 θ 3 ′′ ( 0 , q ) θ 3 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 + q 2 n 1 ) 2 ,
    20.4.11 θ 4 ′′ ( 0 , q ) θ 4 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 q 2 n 1 ) 2 .
    39: 23.12 Asymptotic Approximations
    23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
    23.12.4 η 1 = π 2 4 ω 1 ( 1 3 8 q 2 + O ( q 4 ) ) ,
    40: 12.14 The Function W ( a , x )
    See accompanying text
    Figure 12.14.1: k 1 / 2 W ( 3 , x ) , k 1 / 2 W ( 3 , x ) , F ~ ( 3 , x ) , 0 x 8 . Magnify
    See accompanying text
    Figure 12.14.2: k 1 / 2 W ( 3 , x ) , k 1 / 2 W ( 3 , x ) , G ~ ( 3 , x ) , 0 x 8 . Magnify
    See accompanying text
    Figure 12.14.3: k 1 / 2 W ( 3 , x ) , k 1 / 2 W ( 3 , x ) , F ~ ( 3 , x ) , 0 x 8 . Magnify
    See accompanying text
    Figure 12.14.4: k 1 / 2 W ( 3 , x ) , k 1 / 2 W ( 3 , x ) , G ~ ( 3 , x ) , 0 x 8 . Magnify
    12.14.6 ρ = 1 8 π + 1 2 ϕ 2 ,