About the Project

order olmesartan no rx visit drive-in.co.za

AdvancedHelp

(0.002 seconds)

11—20 of 276 matching pages

11: 9.15 Mathematical Applications
Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
12: Frank W. J. Olver
Olver joined NIST in 1961 after having been recruited by Milton Abramowitz to be the author of the Chapter “Bessel Functions of Integer Order” in the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, a publication which went on to become the most widely distributed and most highly cited publication in NIST’s history. … He also spent time as a Visiting Fellow, or Professor, at the University of Lancaster, U. …
13: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 14: 14.26 Uniform Asymptotic Expansions
    §14.26 Uniform Asymptotic Expansions
    15: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    16: 10.72 Mathematical Applications
    Bessel functions and modified Bessel functions are often used as approximants in the construction of uniform asymptotic approximations and expansions for solutions of linear second-order differential equations containing a parameter. … In regions in which (10.72.1) has a simple turning point z 0 , that is, f ( z ) and g ( z ) are analytic (or with weaker conditions if z = x is a real variable) and z 0 is a simple zero of f ( z ) , asymptotic expansions of the solutions w for large u can be constructed in terms of Airy functions or equivalently Bessel functions or modified Bessel functions of order 1 3 9.6(i)). … If f ( z ) has a double zero z 0 , or more generally z 0 is a zero of order m , m = 2 , 3 , 4 , , then uniform asymptotic approximations (but not expansions) can be constructed in terms of Bessel functions, or modified Bessel functions, of order 1 / ( m + 2 ) . …The order of the approximating Bessel functions, or modified Bessel functions, is 1 / ( λ + 2 ) , except in the case when g ( z ) has a double pole at z 0 . … Then for large u asymptotic approximations of the solutions w can be constructed in terms of Bessel functions, or modified Bessel functions, of variable order (in fact the order depends on u and α ). …
    17: 14.6 Integer Order
    §14.6 Integer Order
    §14.6(i) Nonnegative Integer Orders
    §14.6(ii) Negative Integer Orders
    For connections between positive and negative integer orders see (14.9.3), (14.9.4), and (14.9.13). …
    18: 10.41 Asymptotic Expansions for Large Order
    §10.41 Asymptotic Expansions for Large Order
    §10.41(i) Asymptotic Forms
    §10.41(ii) Uniform Expansions for Real Variable
    19: 10.69 Uniform Asymptotic Expansions for Large Order
    §10.69 Uniform Asymptotic Expansions for Large Order
    20: 14.1 Special Notation
    §14.1 Special Notation
    x , y , τ real variables.
    m , n unless stated otherwise, nonnegative integers, used for order and degree, respectively.
    μ , ν general order and degree, respectively.