28.8 Asymptotic Expansions for Large q28.10 Integral Equations

§28.9 Zeros

For real q each of the functions \mathop{\mathrm{ce}_{{2n}}\/}\nolimits\!\left(z,q\right), \mathop{\mathrm{se}_{{2n+1}}\/}\nolimits\!\left(z,q\right), \mathop{\mathrm{ce}_{{2n+1}}\/}\nolimits\!\left(z,q\right), and \mathop{\mathrm{se}_{{2n+2}}\/}\nolimits\!\left(z,q\right) has exactly n zeros in 0<z<\tfrac{1}{2}\pi. They are continuous in q. For q\to\infty the zeros of \mathop{\mathrm{ce}_{{2n}}\/}\nolimits\!\left(z,q\right) and \mathop{\mathrm{se}_{{2n+1}}\/}\nolimits\!\left(z,q\right) approach asymptotically the zeros of \mathop{\mathit{He}_{{2n}}\/}\nolimits\!\left(q^{{1/4}}(\pi-2z)\right), and the zeros of \mathop{\mathrm{ce}_{{2n+1}}\/}\nolimits\!\left(z,q\right) and \mathop{\mathrm{se}_{{2n+2}}\/}\nolimits\!\left(z,q\right) approach asymptotically the zeros of \mathop{\mathit{He}_{{2n+1}}\/}\nolimits\!\left(q^{{1/4}}(\pi-2z)\right). Here \mathop{\mathit{He}_{{n}}\/}\nolimits\!\left(z\right) denotes the Hermite polynomial of degree n18.3). Furthermore, for q>0 \mathop{\mathrm{ce}_{{m}}\/}\nolimits\!\left(z,q\right) and \mathop{\mathrm{se}_{{m}}\/}\nolimits\!\left(z,q\right) also have purely imaginary zeros that correspond uniquely to the purely imaginary z-zeros of \mathop{J_{{m}}\/}\nolimits\!\left(2\sqrt{q}\mathop{\cos\/}\nolimits z\right)10.21(i)), and they are asymptotically equal as q\to 0 and \left|\imagpart{z}\right|\to\infty. There are no zeros within the strip \left|\realpart{z}\right|<\tfrac{1}{2}\pi other than those on the real and imaginary axes.

For further details see McLachlan (1947, pp. 234–239) and Meixner and Schäfke (1954, §§2.331, 2.8, 2.81, and 2.85).