About the Project

zonal spherical harmonics

AdvancedHelp

(0.002 seconds)

21—30 of 110 matching pages

21: 18.39 Applications in the Physical Sciences
argument a) The Harmonic Oscillator … By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator T e , can be written in spherical coordinates r , θ , ϕ as …The eigenfunctions of L 2 are the spherical harmonics Y l , m l ( θ , ϕ ) with eigenvalues 2 l ( l + 1 ) , each with degeneracy 2 l + 1 as m l = l , l + 1 , , l . … …
c) Spherical Radial Coulomb Wave Functions
22: 10.47 Definitions and Basic Properties
Equation (10.47.1)
Equation (10.47.2)
§10.47(iv) Interrelations
23: 10.49 Explicit Formulas
§10.49(i) Unmodified Functions
§10.49(ii) Modified Functions
§10.49(iii) Rayleigh’s Formulas
§10.49(iv) Sums or Differences of Squares
( 𝗂 0 ( 1 ) ( z ) ) 2 ( 𝗂 0 ( 2 ) ( z ) ) 2 = z 2 ,
24: 35.1 Special Notation
a , b complex variables.
Z κ ( 𝐓 ) zonal polynomials.
Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
25: 14.18 Sums
Zonal Harmonic Series
26: 17.17 Physical Applications
See Kassel (1995). … It involves q -generalizations of exponentials and Laguerre polynomials, and has been applied to the problems of the harmonic oscillator and Coulomb potentials. …
27: 10.53 Power Series
§10.53 Power Series
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
28: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
29: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
30: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
n f n 1 ( z ) ( n + 1 ) f n + 1 ( z ) = ( 2 n + 1 ) f n ( z ) , n = 1 , 2 , ,
f n ( z ) = f n + 1 ( z ) + ( n / z ) f n ( z ) , n = 0 , 1 , .
Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …