About the Project

zeros of analytic functions

AdvancedHelp

(0.008 seconds)

31—40 of 45 matching pages

31: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
For fixed z , each of θ 1 ( z | τ ) / sin z , θ 2 ( z | τ ) / cos z , θ 3 ( z | τ ) , and θ 4 ( z | τ ) is an analytic function of τ for τ > 0 , with a natural boundary τ = 0 , and correspondingly, an analytic function of q for | q | < 1 with a natural boundary | q | = 1 . … The theta functions are quasi-periodic on the lattice: …
§20.2(iv) z -Zeros
32: 25.15 Dirichlet L -functions
§25.15(i) Definitions and Basic Properties
For the principal character χ 1 ( mod k ) , L ( s , χ 1 ) is analytic everywhere except for a simple pole at s = 1 with residue ϕ ( k ) / k , where ϕ ( k ) is Euler’s totient function27.2). …
§25.15(ii) Zeros
Since L ( s , χ ) 0 if s > 1 , (25.15.5) shows that for a primitive character χ the only zeros of L ( s , χ ) for s < 0 (the so-called trivial zeros) are as follows: … There are also infinitely many zeros in the critical strip 0 s 1 , located symmetrically about the critical line s = 1 2 , but not necessarily symmetrically about the real axis. …
33: 18.39 Applications in the Physical Sciences
Below we consider two potentials with analytically known eigenfunctions and eigenvalues where the spectrum is entirely point, or discrete, with all eigenfunctions being L 2 and forming a complete set. Also presented are the analytic solutions for the L 2 , bound state, eigenfunctions and eigenvalues of the Morse oscillator which also has analytically known non-normalizable continuum eigenfunctions, thus providing an example of a mixed spectrum. …
1D Quantum Systems with Analytically Known Stationary States
Namely the k th eigenfunction, listed in order of increasing eigenvalues, starting at k = 0 , has precisely k nodes, as real zeros of wave-functions away from boundaries are often referred to. …
Other Analytically Solved Schrödinger Equations
34: Bibliography K
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • K. S. Kölbig (1972b) On the zeros of the incomplete gamma function. Math. Comp. 26 (119), pp. 751–755.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 35: Mathematical Introduction
    In addition, there is a comprehensive account of the great variety of analytical methods that are used for deriving and applying the extremely important asymptotic properties of the special functions, including double asymptotic properties (Chapter 2 and §§10.41(iv), 10.41(v)).
    Notation for the Special Functions
    Similarly in the case of confluent hypergeometric functions13.2(i)). … Special functions with a complex variable are depicted as colored 3D surfaces in a similar way to functions of two real variables, but with the vertical height corresponding to the modulus (absolute value) of the function. … All of the special function chapters contain sections that describe available methods for computing the main functions in the chapter, and most also provide references to numerical tables of, and approximations for, these functions. …
    36: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    For 𝒟 ( T ) we can take C 2 ( X ) , with appropriate boundary conditions, and with compact support if X is bounded, which space is dense in L 2 ( X ) , and for X unbounded require that possible non- L 2 eigenfunctions of (1.18.28), with real eigenvalues, are non-zero but bounded on open intervals, including ± . … For this latter see Simon (1973), and Reinhardt (1982); wherein advantage is taken of the fact that although branch points are actual singularities of an analytic function, the location of the branch cuts are often at our disposal, as they are not singularities of the function, but simply arbitrary lines to keep a function single valued, and thus only singularities of a specific representation of that analytic function. …This dilatation transformation, which does require analyticity of q ( x ) in (1.18.28), or an analytic approximation thereto, leaves the poles, corresponding to the discrete spectrum, invariant, as they are, as is the branch point, actual singularities of ( z T ) 1 f , f . … Unlike in the example in the paragraph above, in 3-dimensions a “dip below zero, or a potential well” in V ( r ) does not always correspond to the existence of a discrete part of the spectrum. …
    37: 31.15 Stieltjes Polynomials
    §31.15(ii) Zeros
    The zeros z k , k = 1 , 2 , , n , of the Stieltjes polynomial S ( z ) are the critical points of the function G , that is, points at which G / ζ k = 0 , k = 1 , 2 , , n , where … See Marden (1966), Alam (1979), and Al-Rashed and Zaheer (1985) for further results on the location of the zeros of Stieltjes and Van Vleck polynomials. … For further details and for the expansions of analytic functions in this basis see Volkmer (1999).
    38: Bibliography H
  • F. E. Harris (2002) Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Internat. J. Quantum Chem. 88 (6), pp. 701–734.
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 39: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • D. L. Jagerman (1974) Some properties of the Erlang loss function. Bell System Tech. J. 53, pp. 525–551.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.
  • W. B. Jones and W. J. Thron (1980) Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley Publishing Co., Reading, MA.
  • 40: 1.13 Differential Equations
    The equation … Assume that in the equation … u and z belong to domains U and D respectively, the coefficients f ( u , z ) and g ( u , z ) are continuous functions of both variables, and for each fixed u (fixed z ) the two functions are analytic in z (in u ). Suppose also that at (a fixed) z 0 D , w and w / z are analytic functions of u . … The inhomogeneous (or nonhomogeneous) equation …