About the Project

with a parameter

AdvancedHelp

(0.016 seconds)

21—30 of 356 matching pages

21: 8.15 Sums
8.15.1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 λ ) k k ! .
8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
22: 2.8 Differential Equations with a Parameter
§2.8 Differential Equations with a Parameter
§2.8(i) Classification of Cases
Zeros of f ( z ) are also called turning points. …
§2.8(vi) Coalescing Transition Points
23: 8.3 Graphics
Some monotonicity properties of γ ( a , x ) and Γ ( a , x ) in the four quadrants of the ( a , x )-plane in Figure 8.3.6 are given in Erdélyi et al. (1953b, §9.6). …
See accompanying text
Figure 8.3.8: Γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . …There is a cut along the negative real axis. … Magnify 3D Help
See accompanying text
Figure 8.3.9: γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . …There is a cut along the negative real axis. Magnify 3D Help
See accompanying text
Figure 8.3.14: Γ ( 2.5 , x + i y ) , 2.2 x 3 , 3 y 3 . …There is a cut along the negative real axis. … Magnify 3D Help
See accompanying text
Figure 8.3.15: γ ( 2.5 , x + i y ) , 2.2 x 3 , 3 y 3 . …There is a cut along the negative real axis. Magnify 3D Help
24: 8.11 Asymptotic Approximations and Expansions
8.11.1 u k = ( 1 ) k ( 1 a ) k = ( a 1 ) ( a 2 ) ( a k ) ,
8.11.2 Γ ( a , z ) = z a 1 e z ( k = 0 n 1 u k z k + R n ( a , z ) ) , n = 1 , 2 , .
8.11.4 γ ( a , z ) = z a e z k = 0 z k ( a ) k + 1 , a 0 , 1 , 2 , .
If z = λ a , with λ fixed, then as a
25: 28.1 Special Notation
m , n integers.
a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
Alternative notations for the parameters a and q are shown in Table 28.1.1. …
26: 31.8 Solutions via Quadratures
31.8.2 w ± ( 𝐦 ; λ ; z ) = Ψ g , N ( λ , z ) exp ( ± i ν ( λ ) 2 z 0 z t m 1 ( t 1 ) m 2 ( t a ) m 3 d t Ψ g , N ( λ , t ) t ( t 1 ) ( t a ) )
27: 31.2 Differential Equations
The parameters play different roles: a is the singularity parameter; α , β , γ , δ , ϵ are exponent parameters; q is the accessory parameter. … w ( z ) = z 1 γ w 1 ( z ) satisfies (31.2.1) if w 1 is a solution of (31.2.1) with transformed parameters q 1 = q + ( a δ + ϵ ) ( 1 γ ) ; α 1 = α + 1 γ , β 1 = β + 1 γ , γ 1 = 2 γ . Next, w ( z ) = ( z 1 ) 1 δ w 2 ( z ) satisfies (31.2.1) if w 2 is a solution of (31.2.1) with transformed parameters q 2 = q + a γ ( 1 δ ) ; α 2 = α + 1 δ , β 2 = β + 1 δ , δ 2 = 2 δ . … For example, if z ~ = z / a , then the parameters are a ~ = 1 / a , q ~ = q / a ; δ ~ = ϵ , ϵ ~ = δ . …For example, w ( z ) = ( 1 z ) α w ~ ( z / ( z 1 ) ) , which arises from z ~ = z / ( z 1 ) , satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and transformed parameters a ~ = a / ( a 1 ) , q ~ = ( q a α γ ) / ( a 1 ) ; β ~ = α + 1 δ , δ ~ = α + 1 β . …
28: 31.4 Solutions Analytic at Two Singularities: Heun Functions
For an infinite set of discrete values q m , m = 0 , 1 , 2 , , of the accessory parameter q , the function H ( a , q ; α , β , γ , δ ; z ) is analytic at z = 1 , and hence also throughout the disk | z | < a . …
31.4.2 q = a γ P 1 Q 1 + q R 1 P 2 Q 2 + q R 2 P 3 Q 3 + q ,
29: 28.14 Fourier Series
28.14.4 q c 2 m + 2 ( a ( ν + 2 m ) 2 ) c 2 m + q c 2 m 2 = 0 , a = λ ν ( q ) , c 2 m = c 2 m ν ( q ) ,
30: Bille C. Carlson
In his paper Lauricella’s hypergeometric function F D (1963), he defined the R -function, a multivariate hypergeometric function that is homogeneous in its variables, each variable being paired with a parameter. …