About the Project

wave equation

AdvancedHelp

(0.002 seconds)

21—30 of 68 matching pages

21: 30.2 Differential Equations
§30.2(i) Spheroidal Differential Equation
22: Bibliography U
  • K. M. Urwin (1964) Integral equations for paraboloidal wave functions. I. Quart. J. Math. Oxford Ser. (2) 15, pp. 309–315.
  • K. M. Urwin (1965) Integral equations for the paraboloidal wave functions. II. Quart. J. Math. Oxford Ser. (2) 16, pp. 257–262.
  • 23: 33.22 Particle Scattering and Atomic and Molecular Spectra
    The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by …
    §33.22(vi) Solutions Inside the Turning Point
    24: Bibliography T
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • 25: 30.3 Eigenvalues
    §30.3 Eigenvalues
    With μ = m = 0 , 1 , 2 , , the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) are solutions of Equation (30.2.1) which are bounded on ( 1 , 1 ) , or equivalently, which are of the form ( 1 x 2 ) 1 2 m g ( x ) where g ( z ) is an entire function of z . …
    §30.3(iv) Power-Series Expansion
    26: 30.15 Signal Analysis
    §30.15(ii) Integral Equation
    27: Bibliography F
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • 28: Bibliography H
  • C. Hunter and B. Guerrieri (1982) The eigenvalues of the angular spheroidal wave equation. Stud. Appl. Math. 66 (3), pp. 217–240.
  • 29: 30.17 Tables
    §30.17 Tables
    30: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
    Jacobian elliptic functions arise as solutions to certain nonlinear Schrödinger equations, which model many types of wave propagation phenomena. …