About the Project

wave%20functions

AdvancedHelp

(0.004 seconds)

11—19 of 19 matching pages

11: Bibliography K
  • P. L. Kapitsa (1951a) Heat conduction and diffusion in a fluid medium with a periodic flow. I. Determination of the wave transfer coefficient in a tube, slot, and canal. Akad. Nauk SSSR. Žurnal Eksper. Teoret. Fiz. 21, pp. 964–978.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • Y. A. Kravtsov (1968) Two new asymptotic methods in the theory of wave propagation in inhomogeneous media. Sov. Phys. Acoust. 14, pp. 1–17.
  • 12: 18.39 Applications in the Physical Sciences
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    c) Spherical Radial Coulomb Wave Functions
    The radial Coulomb wave functions R n , l ( r ) , solutions of …
    d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
    The Coulomb–Pollaczek polynomials provide alternate representations of the positive energy Coulomb wave functions of Chapter 33. …
    13: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • J. H. Gunn (1967) Algorithm 300: Coulomb wave functions. Comm. ACM 10 (4), pp. 244–245.
  • 14: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • L.-W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong (1998b) Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions. J. Electromagn. Waves Appl. 12 (6), pp. 709–711.
  • Y. A. Li and P. J. Olver (2000) Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations 162 (1), pp. 27–63.
  • Lord Kelvin (1905) Deep water ship-waves. Phil. Mag. 9, pp. 733–757.
  • 15: Bibliography I
  • J. Igusa (1972) Theta Functions. Springer-Verlag, New York.
  • Y. Ikebe (1975) The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, pp. 878–887.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 16: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • W. C. Connett, C. Markett, and A. L. Schwartz (1993) Product formulas and convolutions for angular and radial spheroidal wave functions. Trans. Amer. Math. Soc. 338 (2), pp. 695–710.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • A. R. Curtis (1964a) Coulomb Wave Functions. Roy. Soc. Math. Tables, Vol. 11, Cambridge University Press, Cambridge.
  • 17: Bibliography R
  • H. A. Ragheb, L. Shafai, and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • S. O. Rice (1954) Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills. Bell System Tech. J. 33, pp. 417–504.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 18: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
  • G. B. Whitham (1974) Linear and Nonlinear Waves. John Wiley & Sons, New York.
  • R. L. Wiegel (1960) A presentation of cnoidal wave theory for practical application. J. Fluid Mech. 7 (2), pp. 273–286.
  • 19: Bibliography D
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • L. Dekar, L. Chetouani, and T. F. Hammann (1999) Wave function for smooth potential and mass step. Phys. Rev. A 59 (1), pp. 107–112.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • A. Dzieciol, S. Yngve, and P. O. Fröman (1999) Coulomb wave functions with complex values of the variable and the parameters. J. Math. Phys. 40 (12), pp. 6145–6166.